1.Comparison of dimensional accuracy between direct-printed and thermoformed aligners
Nickolas KOENIG ; Jin-Young CHOI ; Julie MCCRAY ; Andrew HAYES ; Patricia SCHNEIDER ; Ki Beom KIM
The Korean Journal of Orthodontics 2022;52(4):249-257
Objective:
The purpose of this study was to evaluate and compare the dimensional accuracy between thermoformed and direct-printed aligners.
Methods:
Three types of aligners were manufactured from the same reference standard tessellation language (STL) file: thermoformed aligners were manufactured using Zendura FLX TM (n = 12) and Essix ACETM (n = 12), and direct-printed aligners were printed using Tera HarzTM TC-85DAP 3D Printer UV Resin (n = 12). The teeth were not manipulated with any tooth-moving software in this study. The samples were sprayed with an opaque scanning spray, scanned, imported to Geomagic® Control XTM metrology software, and superimposed on the reference STL file by using the best-fit alignment algorithm. Distances between the aligner meshes and the reference STL file were measured at nine anatomical landmarks.
Results:
Mean absolute discrepancies in the Zendura FLXTM aligners ranged from 0.076 ± 0.057 mm to 0.260 ± 0.089 mm and those in the Essix ACETM aligners ranged from 0.188 ± 0.271 mm to 0.457 ± 0.350 mm, while in the direct-printed aligners, they ranged from 0.079 ± 0.054 mm to 0.224 ± 0.041 mm. Root mean square values, representing the overall trueness, ranged from 0.209 ± 0.094 mm for Essix ACETM , 0.188 ± 0.074 mm for Zendura FLXTM , and 0.140 ± 0.020 mm for the direct-printed aligners.
Conclusions
This study showed greater trueness and precision of direct-printed aligners than thermoformed aligners.
2.Force Assessment of Thermoformed and Direct-printed Aligners in a Lingual Bodily Movement of a Central Incisor Over Time: A 14-day In Vitro Study
Mary Linda REMLEY ; Gabriel Ferreira Pessoa Carvalho MIRANDA ; Brent BANKHEAD ; Julie MCCRAY ; Ki Beom KIM
Journal of Korean Dental Science 2023;16(1):23-34
Purpose:
This study aims to investigate the force delivery profile of thermoformed aligners (TFA) compared with direct-printed aligners (DPA) and to explore the effect of different activation amounts on forces and moments of respective groups. A secondary objective is to observe the amount of stress relaxation that occurs over the 7~14 days when aligners are maintained in a simulated intraoral environment.
Materials and Methods:
An in vitro setup was created to quantify forces and moments. It consisted of a three dimensional-printed base plate and segmented maxillary teeth, placed in a semi-enclosed chamber to maintain a temperature of 37°C. Ninety clear aligners were divided into nine groups of ten aligners each based on material types (Zendura, ATMOS, TC-85) and activation amounts. Aligners were created with 0.00, 0.25- and 0.50-mm activations for lingual bodily movement of the upper left central incisor and kept on models in the “stressed” position in a 37°C water bath. Three force components acting on the upper left lateral incisor, upper left central incisor, and upper right central incisor were measured for each time point, beginning from the initial baseline measurement, 8 hours, 16 hours, 24 hours, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, and lastly, 14 days.Result: TC-85 aligners in every activation group showed less force on teeth than Zendura and ATMOS. Significant force levels from 0.0 mm activation were present and stayed consistent over the course of 14 days. Comparisons made for baseline measurements to 7-days and 14-days showed statistically significant change from the baseline force level.
Conclusion
TC-85 aligners demonstrated lower, more consistent forces with fewer side effects. Aligners can generate forces even when no activation is programmed. No major decreases in force levels over time were observed; the intra-oral clinical simulated environment and length of observation time could contribute to this.