1.LncRNA SNHG14 affects the malignant biological behaviors of hepatocellular carcinoma Huh7 cells via targeting the miR-579-3p/SPARC axis
CHEN Aifang ; TIAN Xia ; HAN Zheng ; YAN Juan ; TAN Jie
Chinese Journal of Cancer Biotherapy 2025;32(9):920-926
[摘 要] 目的:探究长链非编码RNA(lncRNA)小核仁RNA宿主基因14(SNHG14)靶向miR-579-3p/富含半胱氨酸的酸性分泌蛋白(SPARC)对肝细胞癌(HCC)细胞恶性生物学行为的影响。方法:常规培养人正常肝细胞(LO2)和HCC细胞Huh7、Hep3B、HepG2,将Huh7细胞随机分为对照组、sh-NC组、sh-SNHG14组、sh-SNHG14 + anti-NC组和sh-SNHG14 + anti-miR-579-3p组,qPCR法检测细胞中SNHG14、miR-579-3p和SPARC mRNA的表达水平,双萤光素酶报告基因实验验证SNHG14与miR-579-3p及miR-579-3p与SPARC调控关系,MTT法、划痕愈合实验、Transwell实验、流式细胞术,以及WB法分别检测各组Huh7细胞的增殖、迁移、侵袭能力、凋亡,以及Huh7细胞中PCNA、E-cadherin、vimentin、SPARC蛋白的表达。结果:在HCC细胞中SNHG14、SPARC mRNA呈高表达、miR-579-3p呈低表达(均P < 0.05);SNHG14与miR-579-3p和miR-579-3p与SPARC mRNA间存在直接结合调控关系(均P < 0.05)。敲减SNHG14可明显抑制Huh7细胞的增殖、迁移、侵袭、PCNA、vimentin、SPARC mRNA及蛋白的表达(均P < 0.05),促进细胞凋亡、miR-579-3p和E-cadherin表达(均P < 0.05);抑制miR-579-3p则可部分逆转敲减SNHG14对Huh7细胞的作用(均P < 0.05)。结论:敲减SNHG14可通过靶向miR-579-3p/SPARC轴抑制Huh7细胞的恶性生物学行为,促进其凋亡;SNHG14和miR-579-3p/SPARC轴可能是HCC治疗的潜在靶点。
2.Off-the-shelf human umbilical cord mesenchymal stromal cell product in acute-on-chronic liver failure: A multicenter phase I/II clinical trial.
Lina CUI ; Huaibin ZOU ; Shaoli YOU ; Changcun GUO ; Jundong GU ; Yulong SHANG ; Gui JIA ; Linhua ZHENG ; Juan DENG ; Xiufang WANG ; Ruiqing SUN ; Dawei DING ; Weijie WANG ; Xia ZHOU ; Guanya GUO ; Yansheng LIU ; Zhongchao HAN ; Zhibo HAN ; Yu CHEN ; Ying HAN
Chinese Medical Journal 2025;138(18):2347-2349
3.Expert consensus on prognostic evaluation of cochlear implantation in hereditary hearing loss.
Xinyu SHI ; Xianbao CAO ; Renjie CHAI ; Suijun CHEN ; Juan FENG ; Ningyu FENG ; Xia GAO ; Lulu GUO ; Yuhe LIU ; Ling LU ; Lingyun MEI ; Xiaoyun QIAN ; Dongdong REN ; Haibo SHI ; Duoduo TAO ; Qin WANG ; Zhaoyan WANG ; Shuo WANG ; Wei WANG ; Ming XIA ; Hao XIONG ; Baicheng XU ; Kai XU ; Lei XU ; Hua YANG ; Jun YANG ; Pingli YANG ; Wei YUAN ; Dingjun ZHA ; Chunming ZHANG ; Hongzheng ZHANG ; Juan ZHANG ; Tianhong ZHANG ; Wenqi ZUO ; Wenyan LI ; Yongyi YUAN ; Jie ZHANG ; Yu ZHAO ; Fang ZHENG ; Yu SUN
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(9):798-808
Hearing loss is the most prevalent disabling disease. Cochlear implantation(CI) serves as the primary intervention for severe to profound hearing loss. This consensus systematically explores the value of genetic diagnosis in the pre-operative assessment and efficacy prognosis for CI. Drawing upon domestic and international research and clinical experience, it proposes an evidence-based medicine three-tiered prognostic classification system(Favorable, Marginal, Poor). The consensus focuses on common hereditary non-syndromic hearing loss(such as that caused by mutations in genes like GJB2, SLC26A4, OTOF, LOXHD1) and syndromic hereditary hearing loss(such as Jervell & Lange-Nielsen syndrome and Waardenburg syndrome), which are closely associated with congenital hearing loss, analyzing the impact of their pathological mechanisms on CI outcomes. The consensus provides recommendations based on multiple round of expert discussion and voting. It emphasizes that genetic diagnosis can optimize patient selection, predict prognosis, guide post-operative rehabilitation, offer stratified management strategies for patients with different genotypes, and advance the application of precision medicine in the field of CI.
Humans
;
Cochlear Implantation
;
Prognosis
;
Hearing Loss/surgery*
;
Consensus
;
Connexin 26
;
Mutation
;
Sulfate Transporters
;
Connexins/genetics*
4.Hippocampal Extracellular Matrix Protein Laminin β1 Regulates Neuropathic Pain and Pain-Related Cognitive Impairment.
Ying-Chun LI ; Pei-Yang LIU ; Hai-Tao LI ; Shuai WANG ; Yun-Xin SHI ; Zhen-Zhen LI ; Wen-Guang CHU ; Xia LI ; Wan-Neng LIU ; Xing-Xing ZHENG ; Fei WANG ; Wen-Juan HAN ; Jie ZHANG ; Sheng-Xi WU ; Rou-Gang XIE ; Ceng LUO
Neuroscience Bulletin 2025;41(12):2127-2147
Patients suffering from nerve injury often experience exacerbated pain responses and complain of memory deficits. The dorsal hippocampus (dHPC), a well-defined region responsible for learning and memory, displays maladaptive plasticity upon injury, which is assumed to underlie pain hypersensitivity and cognitive deficits. However, much attention has thus far been paid to intracellular mechanisms of plasticity rather than extracellular alterations that might trigger and facilitate intracellular changes. Emerging evidence has shown that nerve injury alters the microarchitecture of the extracellular matrix (ECM) and decreases ECM rigidity in the dHPC. Despite this, it remains elusive which element of the ECM in the dHPC is affected and how it contributes to neuropathic pain and comorbid cognitive deficits. Laminin, a key element of the ECM, consists of α-, β-, and γ-chains and has been implicated in several pathophysiological processes. Here, we showed that peripheral nerve injury downregulates laminin β1 (LAMB1) in the dHPC. Silencing of hippocampal LAMB1 exacerbates pain sensitivity and induces cognitive dysfunction. Further mechanistic analysis revealed that loss of hippocampal LAMB1 causes dysregulated Src/NR2A signaling cascades via interaction with integrin β1, leading to decreased Ca2+ levels in pyramidal neurons, which in turn orchestrates structural and functional plasticity and eventually results in exaggerated pain responses and cognitive deficits. In this study, we shed new light on the functional capability of hippocampal ECM LAMB1 in the modulation of neuropathic pain and comorbid cognitive deficits, and reveal a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified hippocampal LAMB1/integrin β1 signaling as a potential therapeutic target for the treatment of neuropathic pain and related memory loss.
Animals
;
Laminin/genetics*
;
Hippocampus/metabolism*
;
Neuralgia/metabolism*
;
Cognitive Dysfunction/etiology*
;
Male
;
Peripheral Nerve Injuries/metabolism*
;
Extracellular Matrix/metabolism*
;
Integrin beta1/metabolism*
;
Pyramidal Cells/metabolism*
;
Signal Transduction
5.Administration of Porphyromonas gingivalis in pregnant mice enhances glycolysis and histone lactylation/ADAM17 leading to cleft palate in offspring.
Xige ZHAO ; Xiaoyu ZHENG ; Yijia WANG ; Jing CHEN ; Xiaotong WANG ; Xia PENG ; Dong YUAN ; Ying LIU ; Zhiwei WANG ; Juan DU
International Journal of Oral Science 2025;17(1):18-18
Periodontal disease is a risk factor for many systemic diseases such as Alzheimer's disease and adverse pregnancy outcomes. Cleft palate (CP), the most common congenital craniofacial defect, has a multifaceted etiology influenced by complex genetic and environmental risk factors such as maternal bacterial or virus infection. A prior case-control study revealed a surprisingly strong association between maternal periodontal disease and CP in offspring. However, the precise relationship remains unclear. In this study, the relationship between maternal oral pathogen and CP in offspring was studied by sonicated P. gingivalis injected intravenously and orally into pregnant mice. We investigated an obvious increasing CP (12.5%) in sonicated P. gingivalis group which had inhibited osteogenesis in mesenchyme and blocked efferocytosis in epithelium. Then glycolysis and H4K12 lactylation (H4K12la) were detected to elevate in both mouse embryonic palatal mesenchyme (MEPM) cells and macrophages under P. gingivalis exposure which further promoted the transcription of metallopeptidase domain17 (ADAM17), subsequently mediated the shedding of transforming growth factor-beta receptor 1 (TGFBR1) in MEPM cells and mer tyrosine kinase (MerTK) in macrophages and resulted in the suppression of efferocytosis and osteogenesis in palate, eventually caused abnormalities in palate fusion and ossification. The abnormal efferocytosis also led to a predominance of M1 macrophages, which indirectly inhibited palatal osteogenesis via extracellular vesicles. Furthermore, pharmacological ADAM17 inhibition could ameliorate the abnormality of P. gingivalis-induced abnormal palate development. Therefore, our study extends the knowledge of how maternal oral pathogen affects fetal palate development and provides a novel perspective to understand the pathogenesis of CP.
Animals
;
Female
;
Porphyromonas gingivalis
;
Pregnancy
;
Mice
;
Cleft Palate/etiology*
;
Glycolysis
6.Regulation Mechanism of Occludin Function and Factors Affecting Its Expression
Shi-Jia ZHANG ; Juan-Xia ZHENG ; Cheng-Wei WANG
Progress in Biochemistry and Biophysics 2024;51(11):2832-2844
Tight-junction (TJ) is a complex supramolecular entity composed of complete membrane proteins, membranes and soluble cytoplasmic proteins, which is distributed in almost all barrier structures in the body. It can maintain the polarity of epithelial cells, close the intercellular space and prevent the overflow of materials in the epithelial space, and is a highly dynamic signaling entity. Occludin is one of the most representative members of TJ proteins, mainly responsible for sealing intercellular connections, maintaining intercellular permeability, and participating in maintaining the integrity of vascular endothelium. The integrity of occludin is related to the integrity of TJ, and the function of occludin is often associated with the barrier properties of various tissues, and the abnormal expression of occludin is related to the occurrence and development of various diseases. Occludin contains abundant Ser and Thr residues and has multiple phosphorylation sites. Phosphorylation is necessary for the combination of occludin and TJ, which can regulate the location of occludin, regulate the expression of occludin, and enhance the permeability and barrier function of TJ. Therefore, phosphorylation regulation is a mechanism that cannot be ignored in the regulation of occludin function. Occludin also interacts with many other proteins, such as co-forming the cytoskeleton with ZO-1, and is regulated by a variety of transcription factors. Studies have confirmed that in pathological conditions, a variety of signaling pathways can disrupt the integrity of cell barrier by regulating the expression and distribution of occludin. Myosin light chain kinase (MLCK) signal transduction pathway is one of the important ways to regulate the structure and function of TJ. It influences the expression of occludin by altering the cytoskeleton. MLCK mainly uses the phosphorylation of myosin light chain (MLC) as a medium to promote actin contraction, secondary decomposition of tightly binding proteins, resulting in increased or changed cellular barrier permeability, and increased MLC phosphorylation is also a biochemical marker of actomyosin contraction. Activation of MLCK causes Thr18 and Ser19 phosphorylation of MLC, which promotes the assembly of myosin II into myosin fibers and activates the hydrolysis of ATP, which relaxes the intercellular connections and reduces the ability of upper cortex to resist external invaders. Protein kinase C (PKC) plays an important role in the regulation of tightly connected signaling molecules, affecting the dynamic changes of paracellular permeability. PKC pathway is a key link in many cell signal transduction pathways, which influences all aspects of cell activities by catalyzing Ser/Thr residues phosphorylation of membrane proteins and many enzyme proteins. After PKC activation, it can regulate cellular barrier function by phosphorylating occludin and inducing its redistribution, and directly affect TJ action. Specific PKC subunits such as PKCα, PKCδ and PKCγ are activated and act on occludin molecules to promote their phosphorylation and cause the increase of TEER. The increase of TEER helps to regulate intercellular TJ and enhance the tightness of intercellular connections. Mitogen-activated protein kinases (MAPK) are usually activated by inflammatory factors, during which different signal transduction pathway subfamilies are formed to regulate occludin expression and affect tight junction and mucosal barrier functional integrity. Meanwhile, occludin is easily affected by various factors (such as cytokines and flora toxins), and abnormal expression of occludin will lead to structural damage of TJ and further damage of the intercellular barrier. Therefore, this paper summarizes the molecular structure and physiological function of occludin, and further summarizes its related signal regulation pathways and influencing factors, in order to provide theoretical support for maintaining the integrity of barrier function of occludin.
7. Expression and distribution of brain⁃derived neurotrophic factor in different cerebrum regions of yak and cattle
Li-Ping ZHENG ; Xiao-Hua DU ; Ya-Juan WU ; Shan-Shan LIU ; Xia LIU
Acta Anatomica Sinica 2024;55(1):10-16
Objective To clarify the expression and distribution of brain⁃derived neurotrophic factor (BDNF) in the cerebrum of plateau yaks and cattle, and to explore the relationship between BDNF function and the adaptability of altitude hypoxia. Methods Five yaks and five cattles were selected.The content and distribution of BDNF in frontal lobe, temporal lobe, parietal lobe, occipital lobe, cerebrum white matter and hippocampus of yak and cattle were analyzed by Real⁃time PCR, Western blotting and Immunohistochemistry. Results Real⁃time PCR result showed that BDNF mRNA expression in the cerebrum of yaks and cattles was highest in temporal cortex, followed by hippocampus, parietal cortex, occipital cortex and frontal cortex, and lowest in white matter. Western blotting results showed that the content of BDNF protein in the cerebrum of yaks was the highest in temporal cortex,followed by hippocampus. The content of BDNF protein in other tissues was parietal cortex, frontal cortex and cerebrum white matter, and the content of BDNF protein was the lowest in occipital cortex. The content of BDNF protein intlecerebrum of cattles was the highest in the temporal cortex, followed by the hippocampus. The content of BDNF protein in other tissues was parietal cortex, occipital cortex and frontal cortex in descending order, and the protein content in cerebrum white matter was the lowest. Immunohistochemical results showed that the positive expression of BDNF protein in the cerebrum of yaks and cattles was basically similar, mainly distributed in the granulosa cells and glial cells in the frontal cortex, temporal cortex, parietal cortex and occipital cortex, glial cells in cerebrum white matter, pyramidal cell layer and polyform cell layer in the hippocampus. There was the small amount of distribution in Martinotti cells and the molecular layer of hippocampus in the cerebral cortex. Conclusion BDNF mRNA and protein are distributed and expressed in different brain regions of yaks and cattles, but the expression level different, which is speculated to be closely related to the specific functions of different cerebrum regions. The expression level of the cerebrum of yak is higher than that of cattle except occipital cortex, suggesting that it is related to the altitude hypoxic environment. BDNF may play an important role in enhancing hypoxic tolerance and protecting internal environmental homeostasis in the process of animal adaptation to hypoxic environment.
8.Clinical study on the combination of Huolong Moxibustion and Shaofu Zhuyu Ointment acupoint application in the treatment of sequelae of pelvic inflammatory disease with cold coagulation and stasis syndrome
Juan SHAO ; Ying DANG ; Xia ZHENG ; Hongyu TONG
International Journal of Traditional Chinese Medicine 2024;46(12):1577-1582
Objective:To evaluate the clinical efficacy of Huolong moxibustion combined with Shaofu Zhuyu ointment acupoint application in the treatment of sequelae of pelvic inflammatory disease with cold coagulation and stasis syndrome.Methods:Randomized controlled trial study was performed. 102 patients with pelvic inflammatory disease in our hospital from June 2021 to June 2023 were selected as the observation subjects. They were divided into two groups according to random number table method, with 51 cases in each group. The control group was treated with conventional Western medicine therapy, with 10 days as one course of treatment, for a total of 3 courses of treatment. The observation group was treated with Huolong Moxibustion combined with Shaofu Zhuyu Ointment acupoint application, once every 3 days, with 5 sessions as a course of treatment, for a total of 3 menstrual cycles. TCM syndrome scores were performed before and after treatment; doppler ultrasound diagnostic instrument was used to detect the maximum systolic blood flow velocity (PSV), end diastolic blood flow velocity (EDV), pulsatile index (PI), and resistance index (RI) of the uterine artery; ELISA was used to detect levels of β - endorphin (β - EP), prostaglandin F2α(PGF2α), and serum substance P (SP). Adverse reactions during treatment were recorded, and clinical efficacy was evaluated.Results:The total effective rate of the observation group was 92.16% (47/51), while that of the control group was 76.47% (39/51),the difference between the two groups was statistically significant ( χ2=4.74, P=0.029).After treatment, the observation group had lower abdominal pain refusal to press (1.76 ± 0.45 vs. 2.12 ± 0.54, t=3.66),limb coldness and chills (1.85 ± 0.47 vs. 2.21 ± 0.60, t=3.37), menstrual disorders (1.93 ± 0.56 vs. 2.31 ± 0.58, t=3.37), tongue purple coating white score (2.04 ± 0.55 vs. 2.52 ± 0.50, t=4.25) and total score (7.58 ± 1.56 vs. 9.16 ± 1.92, t=4.56) than the control group ( P<0.01); the EDV [(18.86 ± 3.65) cm/s vs. (14.45 ± 3.51) cm/s, t=6.23] and PSV [(37.94 ± 5.19) cm/s vs. (32.21 ± 4.97) cm/s, t=5.70] of the uterine artery were higher than those in the control group ( P<0.01); the RI [(72.62 ± 7.56)% vs. (78.31 ± 6.58)%, t=4.05], PI [(41.94 ± 5.90)% vs. (47.52 ± 5.59)%, t=4.90] were lower than those in the control group ( P<0.01);the levels of β-EP [(49.86 ± 5.87) μg/L vs. (55.41 ± 5.91) μg/L, t=4.76], PGF2α [(71.94 ± 8.13) μg/L vs. (78.21 ± 8.97) μg/L, t=3.70], and SP [(19.12 ± 3.98) μg/L vs. (22.34 ± 3.81) μg/L, t=4.17] were lower than those in the control group ( P<0.05).The incidence of adverse reactions during treatment was 11.76% (6/51) in the observation group and 3.9% (2/51) in the control group, with no statistically significant difference between the two groups ( χ2=0.44, P=0.505). Conclusion:The combination of Huolong Moxibustion and Shaofu Zhuyu Ointment acupoint application can effectively improve the microcirculation status of the uterine artery in patients with pelvic inflammatory disease sequelae of cold coagulation and blood stasis syndrome, reduce the level of pain factors, alleviate the main symptoms of patients, improve clinical efficacy, and have good safety.
9.The role and mechanism of miR-34a/SIRT1 in intensive care unit acquired weakness
Zheng-Xiao LIN ; Zhao-Xia XU ; Juan CHEN ; Jian HU ; Guo-Yun ZHU ; Zhong-Li ZHU ; Jian FENG ; Fu-Xiang LI
Medical Journal of Chinese People's Liberation Army 2024;49(7):796-803
Objective To investigate the role and underlying mechanisms of miR-34a/SIRT1 in intensive care unit acquired weakness(ICU-AW).Methods(1)C2C12 mouse skeletal muscle cells were induced to differentiate into myotubes,and were divided into two groups:model group[ICU-AW group,treated with lipopolysaccharides(LPS)for 12 hours]and normal control group(treated with the same amount of sterile water for 12 hours).Western blotting was used to detect the protein expression level of Muscle ring finger 1(MuRF-1),atrophy gene 1(Atrogin-1)and Sirtuin-1(SIRT1).RT-qPCR was used to assess the mRNA expression level of microRNA-34a(miR-34a),MuRF-1,Atrogin-1 and SIRT1,and light microscope was used to observe the growth and differentiation of C2C12 skeletal muscle cells in each group.(2)ICU-AW cells were further subdivided into control group(treated with siRNA transfection agent intervention),Scra siRNA group(treated with transfection agent and non-specific siRNA),miR-34a siRNA group(treated with transfection agent and specific siRNA intervention),vehicle group(treated with agonist solvent dimethyl sulfoxide)and SRT1720 group(treated with SIRT1 agonist SRT1720).Western blotting was used to detect the protein expression level of SIRT1,Atrogin-1 and MuRF-1 in each group.RT-qPCR was used to detect the miR-34a and the mRNA expression level of SIRT1,Atrogin-1 and MuRF-1 in each group.(3)In addition,another group of ICU-AW cells were divided into control group(treated with siRNA transfection),miR-34a siRNA group(treated with transfection agent and specific siRNA intervention),miR-34a siRNA+vehicle group(treated with transfection agent,specific siRNA and Dimethyl sulfoxide intervention)and miR-34a siRNA+EX-527 group(treated with transfection agent,specific siRNA and SIRT1 inhibitor EX-527).Western blotting was used to detect the protein expression level of Atrogin-1 and MuRF-1.RT-qPCR was used to assess the mRNA expression level of Atrogin-1 and MuRF-1.Results Myotube differentiation was observed on the 4th day.Compared with control group,myotube atrophy was obvious in ICU-AW group.RT-qPCR and Western blotting results revealed that,compared with normal control group,in ICU-AW group,the mRNA and protein expression levels of Atrogin-1 and MuRF-1 significantly increased(P<0.05),and the expression level of miR-34a significantly increased(P<0.05),while the mRNA and protein expression levels of SIRT1 significantly decreased(P<0.05).RT-qPCR results showed that,compared with control group(treated with siRNA transfection agent intervention)and Scra siRNA group,the expression of miR-34a and mRNA expression of Atrogin-1 and MuRF-1 in miR-34a siRNA group significantly decreased(P<0.05),while the mRNA expression of SIRT1 significantly increased(P<0.05),meanwhile the protein expression of Atrogin-1 and MuRF-1 decreased significantly(P<0.01),and the protein expression of SIRT1 significantly increased(P<0.05).RT-qPCR results also showed that,compared with vehicle group,the mRNA expression of Atrogin-1 and MuRF-1 in SRT1720 group decreased significantly(P<0.05),while SIRT1 increased significantly(P<0.05).Western blotting results demonstrated that,compared with control group and Scra siRNA group,the protein expression of Atrogin-1 and MuRF-1 in miR-34a siRNA group decreased significantly(P<0.05),while SIRT1 increased significantly(P<0.05).RT-qPCR and Western blotting results indicated that,compared with miR-34a siRNA+vehicle group,the mRNA and protein expression of Atrogin-1 and MuRF-1 in miR-34a siRNA+EX-527 group increased significantly(P<0.05).Conclusion Overactivation of miR-34a in ICU-AW contributes to skeletal muscle atrophy by inhibiting the expression of SIRT1,which may play an important role in the pathogenesis of ICU-AW.
10.Localization and anatomical measurement of lateral compression Ⅱscrew guide needle insertion point for pelvic fracture
Yong-Zheng CHEN ; Zhen-Hua HU ; Shao-Juan LI ; Xia-Cun LIANG ; Li-Kang HOU ; Shu-Liang ZHU ; Xin-Ying BAI ; Jin-Jian HE ; De-Meng YANG ; Zhi-Guo CHEN
Acta Anatomica Sinica 2024;55(6):728-733
Objective To measure the distance between the lateral compression Ⅱ(LC-Ⅱ)screw guide needle and the surrounding important structures around the anterior inferior iliac spine in pelvic fractures and to locate the needle point,so as to provide anatomical reference for clinical nail placement.Methods Totally 40 adult gross specimens of embalming were implanted with LC-Ⅱ screw guide needle under the surveillance of C-arm machine,and the specimens were dissected.The shortest distance between the insertion point and the lateral femoral cutaneous nerve,femoral nerve,femoral artery,femoral vein,anterior superior iliac spine and inguinal ligament was measured.The triangle was constructed between the insertion point,anterior superior iliac spine and inguinal ligament,and the exact location of the entry point was calculated.Results The average distance between the insertion point of the male needle and the femoral vein was(50.67±7.29)mm>the anterior superior iliac spine(43.83±7.58)mm>the femoral artery(38.35±6.63)mm>the femoral nerve(31.17±1.67)mm=the inguinal ligament(28.69±6.59)mm>the lateral femoral cutaneous nerve(7.98±3.81)mm.The mean distance between the insertion point of the female needle and the anterior superior iliac spine was(45.28±7.07)mm=femoral vein(43.72±6.89)mm>femoral artery(33.76±6.33)mm>femoral nerve(25.66±6.46)mm=inguinal ligament(23.22±5.00)mm>lateral femoral cutaneous nerve(8.97±4.76)mm.The projection distance of the entry point was 31.77 mm for men and 38.41 mm for women.The Angle b was 42.81°for men and 31.71° for women.Conclusion The lateral femoral cutaneous nerve is most vulnerable to injury when LC-Ⅱ screw is inserted,and the risk of injury has nothing to do with sex.The insertion point positioning method a and b made LC-Ⅱ screw placement quickly,safely and accurately,and reduced fluoroscopy time and frequency.

Result Analysis
Print
Save
E-mail