1.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
2.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
3.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
4.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.
5.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.
6.Changing resistance profiles of Staphylococcus isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yuling XIAO ; Mei KANG ; Yi XIE ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(5):570-580
Objective To investigate the changing distribution and antibiotic resistance profiles of clinical isolates of Staphylococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Staphylococcus according to the unified protocol of CHINET(China Antimicrobial Surveillance Network)using disk diffusion method and commercial automated systems.The CHINET antimicrobial resistance surveillance data from 2015 to 2021 were interpreted according to the 2021 CLSI breakpoints and analyzed using WHONET 5.6.Results During the period from 2015 to 2021,a total of 204,771 nonduplicate strains of Staphylococcus were isolated,including 136,731(66.8%)strains of Staphylococcus aureus and 68,040(33.2%)strains of coagulase-negative Staphylococcus(CNS).The proportions of S.aureus isolates and CNS isolates did not show significant change.S.aureus strains were mainly isolated from respiratory specimens(38.9±5.1)%,wound,pus and secretions(33.6±4.2)%,and blood(11.9±1.5)%.The CNS strains were predominantly isolated from blood(73.6±4.2)%,cerebrospinal fluid(12.1±2.5)%,and pleural effusion and ascites(8.4±2.1)%.S.aureus strains were mainly isolated from the patients in ICU(17.0±7.3)%,outpatient and emergency(11.6±1.7)%,and department of surgery(11.2±0.9)%,whereas CNS strains were primarily isolated from the patients in ICU(32.2±9.7)%,outpatient and emergency(12.8±4.7)%,and department of internal medicine(11.2±1.9)%.The prevalence of methicillin-resistant strains was 32.9%in S.aureus(MRSA)and 74.1%in CNS(MRCNS).Over the 7-year period,the prevalence of MRSA decreased from 42.1%to 29.2%,and the prevalence of MRCNS decreased from 82.1%to 68.2%.MRSA showed higher resistance rates to all the antimicrobial agents tested except trimethoprim-sulfamethoxazole than methicillin-susceptible S.aureus(MSSA).Over the 7-year period,MRSA strains showed decreasing resistance rates to gentamicin,rifampicin,and levofloxacin,MRCNS showed decreasing resistance rates to gentamicin,erythromycin,rifampicin,and trimethoprim-sulfamethoxazole,but increasing resistance rate to levofloxacin.No vancomycin-resistant strains were detected.The prevalence of linezolid-resistant MRCNS increased from 0.2%to 2.3%over the 7-year period.Conclusions Staphylococcus remains the major pathogen among gram-positive bacteria.MRSA and MRCNS were still the principal antibiotic-resistant gram-positive bacteria.No S.aureus isolates were found resistant to vancomycin or linezolid,but linezolid-resistant strains have been detected in MRCNS isolates,which is an issue of concern.
7.Clinical application evaluation of the fluorescence quantitative PCR melting curve method for detecting fungal nucleic acid
Ping NI ; Juan XU ; Haitao HU ; Hailin PENG ; Wang LI ; Chenglin ZHOU ; Surong DONG
Chinese Journal of Clinical Laboratory Science 2024;42(9):641-647
Objective To evaluate the accuracy and clinical application value of the fluorescence quantitative PCR melting curve meth-od for detecting fungal nucleic acid.Methods 460 suspected or confirmed patients with respiratory fungal infections were enrolled in the study.The fluorescence quantitative PCR melting curve method was used as the test method,and the fungal 26S rRNA gene nucleic acid detection kit combined with Sanger sequencing was used as the reference method.Sputum samples from each study subject were collected and detected by the test method and reference method,respectively.The Kappa value of the two methods was calculated to evaluate the consistency of the results.Results Compared with the reference method,the overall conformity rate of the test method was 92.83%(427/460).Compared with the reference method,the positive conformity rates,negative conformity rates,and overall conformity rates of the test method for detecting 8 fungi,including Candida albicans,Candida glabrata,Candida krusei,Candida trop-icalis,Candida parapsilosis,Cryptococcus neoformans,Candida guilliermondii,and Aspergillus,were 97.34%(183/188),97.06%(264/272),and 97.17%(447/460),100.00%(33/33),99.77%(426/427),and 99.78%(459/460),100.00%(16/16),99.55%(442/444),and 99.57%(458/460),98.11%(52/53),99.75%(442/444),and 99.57%(458/460),95.08%(58/61),99.50%(397/399),and 98.91%(455/460),100.00%(9/9),99.56%(449/451),and 99.57%(458/460),85.00%(17/20),99.32%(437/440),and 98.70%(454/460),and 97.59%(81/83),97.88%(369/377),and 97.83%(450/460),respectively.The Kappa values for the consistency evaluation of the two methods'detection results were both greater than 0.8.Upon retesting the inconsistent re-sults of the two methods,it was found that 53.7%(22/41)of the detection results were consistent with the test method,and the others were consistent with the reference method.Conclusion The fluorescence quantitative PCR melting curve method can simultaneously detect 8 kinds of fungi,and the detection results are highly consistent with the reference method.It has unique advantages in fungal de-tection and important clinical application value.
8.Final evaluation of the prevention and control plan of key parasitic diseases in Hubei Province, 2016-2019
ZHANG Juan ; XIA Jing ; ZHU Hong ; LIN Wen ; WU Dong-ni ; WAN Lun ; ZHANG Hua-xun
China Tropical Medicine 2023;23(5):468-
Abstract: Objective To evaluate the completion and final effect of key parasitic disease prevention and control planning tasks in Hubei Province from 2016 to 2019, summarize the experience, find out the problems, and provide the basis for the next stage of prevention and control. Methods According to the requirements of the Final Evaluation Plan of the National Plan for the Prevention and Control of Hydatid Disease and Other Major Parasitic Diseases (2016-2020), a retrospective survey method was adopted to collect relevant data on the implementation and safeguard measures of the prevention and control of major parasitic diseases, and population infection status in Hubei Province in 2016-2019. Results From 2016 to 2019, We carried out 2 920 992 person times of publicity and education, 209 times of prevention and control technology training, 7 680 person times of business training, with an average of 52 sessions and 1 920 person times per year. We have allocated 3.445 2 million yuan for the prevention and control of parasitic diseases, including 1.722 2 million Yuan froom provincial government, to achieved full coverage of safe drinking water in rural areas under the current national standards, and 7.687 9 million harmless toilets have been built in rural areas. From 2016 to 2019, we carried out 39 658 person times of monitoring and disease investigation, the infection rate of human liver fluke was 0, and the infection rate of soil transmitted nematode was 0.42%. While the annual infection rates varied, there was no statistically significant difference in infection rate between years (χ2=2.276, P>0.05), but there were statistically significant differences in the infection rates between various soil nematodes (χ2=112.807, P<0.01). From 2016 to 2019, a total of 5 393 people were detected at 17 monitoring points, with the serum positive rate of 3.93% for paragonimiasis, there was a statistically significant difference in serological positive rate between years (χ2=146.011, P<0.01); a total of 738 stream crabs were collected, and the infection rate of intermediate host was 16.26%, wtih a statistically significant difference in the infection rate of stream crabs between years (χ2=49.731, P<0.01). Conclusions From 2016 to 2019, we adhered to the prevention and control strategy of "prevention first, prevention and control combined", implemented comprehensively various prevention and control measures, and achieved remarkable results in Hubei Province. The key parasitic diseases have been in a low epidemic situation, meeting the requirements of the prevention and control objectives. But the transmission risk still exists, the next step is to continue to strengthen security and monitoring and consolidate the achievements of prevention and control.
9.Epidemic characteristics of malaria cases before and after malaria elimination in Hubei Province
WU Dong-ni ; ZHANG Hua-xun ; ZHU Hong ; WAN Lun ; SUN Ling-cong ; CAO Mu-min ; XIA Jing ; ZHANG Juan
China Tropical Medicine 2023;23(6):579-
Abstract: Objective To collect and organize malaria case data in Hubei Province from 2017 to 2021, compare and analyze the malaria epidemic characteristics on the before and after malaria elimination, and provide scientific support for Hubei Province to further optimize the comprehensive strategies to prevent re-transmission after the elimination of malaria. Methods The study was conducted by collecting the data of reported malaria cases of Hubei during 2017-2021 from the Infectious Disease Surveillance Reporting and Management System, and conducting the epidemiological characteristics of malaria on pre-elimination (2017-2019) and post-elimination (2020-2021). Results A total of 429 cases of imported malaria were reported in Hubei Province from 2017 to 2021, and the malaria epidemic showed an obvious trend of rising first and then falling. On the pre-malaria elimination, 374 malaria cases were reported, including 262 cases of P.falciparum (70.05%); on the post-malaria elimination, 55 malaria cases were reported, including 25 cases of P.falciparum (45.45%). There was a statistically significant difference in the proportion of infections caused by the four types of malaria parasites before and after the elimination of malaria (χ2=14.248, P<0.05). On the pre-malaria elimination, the peak of disease onset mainly occurred in January, July, and November; on the post-malaria elimination, the peak of disease onset mainly occurred in January to February, and December. Both before and after malaria elimination, the reported cases were mainly concentrated in Wuhan, Yichang, Huangshi, Xiangyang, Shiyan and Huanggang, but the range of cases showed a clear trend of narrowing. Before and after malaria elimination, malaria cases in Hubei Province were mainly among young and middle-aged males aged 30-49. The proportions of workers and migrant workers increased from 37.70% and 9.09% before the elimination to 50.91% and 18.18% after the elimination, respectively, with a statistically significant difference (χ2=17.839, P<0.05). The percentage of interval from onset of illness to initial diagnosis ≥ 5d decreased from 21.66% before the elimination to 10.91% after the elimination (χ2=6.448, P<0.05). The percentage of definitive diagnosis of malaria at initial diagnosis in town clinic increased from 18.18% before the elimination to 50.00% after the elimination. The proportion of malaria cases diagnosed by county-level medical institutions increased from 22.73% before the elimination to 34.55% after elimination. There was no statistically significant difference in the proportion of malaria cases diagnosed by medical institutions at all levels before and after the elimination of malaria (χ2=5.630, P>0.05). The proportion of cases with the interval between initial diagnosis and diagnosis within 24h increased from 43.85% before the elimination to 70.91% after the elimination. There was a statistically significant difference in the proportion of cases with the interval between initial diagnosis and diagnosis before and after the elimination of malaria (χ2=14.006, P<0.05). Before and after malaria elimination, all reported cases were mainly imported from African countries. Conclusions There are imported malaria cases reported every year in Hubei Province before and after the elimination of malaria, which poses a great challenge to the prevention of re-transmission. Therefore, it is necessary to strengthen the surveillance system, detect and standardize the treatment of imported malaria cases in a timely manner, conduct targeted retransmission risk surveys and assessments, and consolidate the achievements of malaria elimination.
10.Clinical treatment outcomes and their changes in extremely preterm twins: a multicenter retrospective study in Guangdong Province, China.
Bi-Jun SHI ; Ying LI ; Fan WU ; Zhou-Shan FENG ; Qi-Liang CUI ; Chuan-Zhong YANG ; Xiao-Tong YE ; Yi-Heng DAI ; Wei-Yi LIANG ; Xiu-Zhen YE ; Jing MO ; Lu DING ; Ben-Qing WU ; Hong-Xiang CHEN ; Chi-Wang LI ; Zhe ZHANG ; Xiao RONG ; Wei SHEN ; Wei-Min HUANG ; Bing-Yan YANG ; Jun-Feng LYU ; Hui-Wen HUANG ; Le-Ying HUO ; Hong-Ping RAO ; Wen-Kang YAN ; Xue-Jun REN ; Yong YANG ; Fang-Fang WANG ; Dong LIU ; Shi-Guang DIAO ; Xiao-Yan LIU ; Qiong MENG ; Yu WANG ; Bin WANG ; Li-Juan ZHANG ; Yu-Ge HUANG ; Dang AO ; Wei-Zhong LI ; Jie-Ling CHEN ; Yan-Ling CHEN ; Wei LI ; Zhi-Feng CHEN ; Yue-Qin DING ; Xiao-Yu LI ; Yue-Fang HUANG ; Ni-Yang LIN ; Yang-Fan CAI ; Sha-Sha HAN ; Ya JIN ; Guo-Sheng LIU ; Zhong-He WAN ; Yi BAN ; Bo BAI ; Guang-Hong LI ; Yue-Xiu YAN
Chinese Journal of Contemporary Pediatrics 2022;24(1):33-40
OBJECTIVES:
To investigate the clinical treatment outcomes and the changes of the outcomes over time in extremely preterm twins in Guangdong Province, China.
METHODS:
A retrospective analysis was performed for 269 pairs of extremely preterm twins with a gestational age of <28 weeks who were admitted to the department of neonatology in 26 grade A tertiary hospitals in Guangdong Province from January 2008 to December 2017. According to the admission time, they were divided into two groups: 2008-2012 and 2013-2017. Besides, each pair of twins was divided into the heavier infant and the lighter infant subgroups according to birth weight. The perinatal data of mothers and hospitalization data of neonates were collected. The survival rate of twins and the incidence rate of complications were compared between the 2008-2012 and 2013-2017 groups.
RESULTS:
Compared with the 2008-2012 group, the 2013-2017 group (both the heavier infant and lighter infant subgroups) had lower incidence rates of severe asphyxia and smaller head circumference at birth (P<0.05). The mortality rates of both of the twins, the heavier infant of the twins, and the lighter infant of the twins were lower in the 2013-2017 group compared with the 2008-2012 group (P<0.05). Compared with the 2008-2012 group, the 2013-2017 group (both the heavier infant and lighter infant subgroups) had lower incidence rates of pulmonary hemorrhage, patent ductus arteriosus (PDA), periventricular-intraventricular hemorrhage (P-IVH), and neonatal respiratory distress syndrome (NRDS) and a higher incidence rate of bronchopulmonary dysplasia (P<0.05).
CONCLUSIONS
There is a significant increase in the survival rate over time in extremely preterm twins with a gestational age of <28 weeks in the 26 grade A tertiary hospitals in Guangdong Province. The incidences of severe asphyxia, pulmonary hemorrhage, PDA, P-IVH, and NRDS decrease in both the heavier and lighter infants of the twins, but the incidence of bronchopulmonary dysplasia increases. With the improvement of diagnosis and treatment, the multidisciplinary collaboration between different fields of fetal medicine including prenatal diagnosis, obstetrics, and neonatology is needed in the future to jointly develop management strategies for twin pregnancy.
Bronchopulmonary Dysplasia/epidemiology*
;
Female
;
Gestational Age
;
Humans
;
Infant
;
Infant, Extremely Premature
;
Infant, Newborn
;
Pregnancy
;
Respiratory Distress Syndrome, Newborn/epidemiology*
;
Retrospective Studies
;
Treatment Outcome

Result Analysis
Print
Save
E-mail