1.Formulation and interpretation of the Guidelines for the Pharmacist-managed Clinics Service and Document Writing and Usage(Reference)
Lijuan YANG ; Quanzhi LI ; Kejing WANG ; Xiaofen YE ; Zining WANG ; Xuelian YAN ; Liang HUANG ; Juan LI ; Jiancun ZHEN
China Pharmacy 2025;36(11):1301-1305
The writing of pharmacist-managed clinics documents (hereinafter referred to as “outpatient medication record”) is a necessary part of pharmacist-managed clinics service. Outpatient medication record is an important carrier to reflect the quality of pharmacist-managed clinics service. The Chinese Hospital Association Pharmaceutical Specialized Committee was entrusted by the Pharmaceutical Administration Department of the National Health Commission to lead the formulation of the Guidelines for the Pharmacist-managed Clinics Service and Document Writing and Usage (Reference) (hereinafter referred to as Guidelines) according to the compilation method of group standards and the technical route of “documentation combing→framework establishment→draft writing→opinion collection→Guidelines formation”. The Guidelines standardizes the basic requirements of pharmacist-managed clinics record management and the basic content of record, and provides a general template and two specialized templates including pregnant and lactating pharmacist-managed clinics record template and cough and asthma pharmacist-managed clinics record template, which provides a reference for medical institutions to write pharmacist-managed clinics record. This paper introduces the formulation process of Guidelines and analyzes the key contents of Guidelines, which is helpful for the application practice of Guidelines and further improves the quality of pharmacist-managed clinics work.
2.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
3.Effects of total extract of Anthriscus sylvestris on immune inflammation and thrombosis in rats with pulmonary arterial hypertension based on TGF-β1/Smad3 signaling pathway.
Ya-Juan ZHENG ; Pei-Pei YUAN ; Zhen-Kai ZHANG ; Yan-Ling LIU ; Sai-Fei LI ; Yuan RUAN ; Yi CHEN ; Yang FU ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2025;50(9):2472-2483
This study aimed to explore the effects and mechanisms of total extracts from Anthriscus sylvestris on pulmonary hypertension in rats. Sixty male SD rats were divided into normal(NC) group, model(M) group, positive drug sildenafil(Y) group, low-dose A. sylvestris(ES-L) group, medium-dose A. sylvestris(ES-M) group, and high-dose A. sylvestris(ES-H) group. On day 1, rats were intraperitoneally injected with monocrotaline(60 mg·kg~(-1)) to induce pulmonary hypertension, and the rat model was established on day 28. From days 15 to 28, intragastric administration of the respective treatments was performed. After modeling and treatment, small animal echocardiography was used to detect the right heart function of the rats. Arterial blood gas was measured using a blood gas analyzer. Hematoxylin and eosin(HE) staining and Masson staining were performed to observe cardiopulmonary pathological damage. Flow cytometry was used to detect apoptosis in the lung and myocardial tissues and reactive oxygen species(ROS) levels. Western blot was applied to detect the expression levels of transforming growth factor-β1(TGF-β1), phosphorylated mothers against decapentaplegic homolog 3(p-Smad3), Smad3, tissue plasminogen activator(t-PA), and plasminogen activator inhibitor-1(PAI-1) in lung tissue. A blood routine analyzer was used to measure inflammatory immune cell levels in the blood. Enzyme-linked immunosorbent assay(ELISA) was used to detect the expression levels of P-selectin and thromboxane A2(TXA2) in plasma. The results showed that, compared with the NC group, right heart hypertrophy index, right ventricular free wall thickness, right heart internal diameter, partial carbon dioxide pressure(PaCO_2), apoptosis in cardiopulmonary tissue, and ROS levels were significantly increased in the M group. In contrast, the ratio of pulmonary blood flow acceleration time(PAT)/ejection time(PET), right cardiac output, change rate of right ventricular systolic area, systolic displacement of the tricuspid ring, oxygen partial pressure(PaO_2), and blood oxygen saturation(SaO_2) were significantly decreased in the M group. After administration of the total extract of A. sylvestris, right heart function and blood gas levels were significantly improved, while apoptosis in cardiopulmonary tissue and ROS levels significantly decreased. Further testing revealed that the total extract of A. sylvestris significantly decreased the levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and PAI-1 proteins in lung tissue, while increasing the expression of t-PA. Additionally, the extract reduced the levels of inflammatory cells such as leukocytes, lymphocytes, granulocytes, and monocytes in the blood, as well as the levels of P-selectin and TXA2 in plasma. Metabolomics results showed that the total extract of A. sylvestris significantly affected metabolic pathways, including arginine biosynthesis, tyrosine metabolism, and taurine and hypotaurine metabolism. In conclusion, the total extract of A. sylvestris may exert an anti-pulmonary hypertension effect by inhibiting the TGF-β1/Smad3 signaling pathway, thereby alleviating immune-inflammatory responses and thrombosis.
Animals
;
Male
;
Smad3 Protein/metabolism*
;
Transforming Growth Factor beta1/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
Signal Transduction/drug effects*
;
Hypertension, Pulmonary/genetics*
;
Thrombosis/immunology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Humans
;
Apoptosis/drug effects*
4.Characteristics of Gut Microbiota Changes and Their Relationship with Infectious Complications During Induction Chemotherapy in AML Patients.
Quan-Lei ZHANG ; Li-Li DONG ; Lin-Lin ZHANG ; Yu-Juan WU ; Meng LI ; Jian BO ; Li-Li WANG ; Yu JING ; Li-Ping DOU ; Dai-Hong LIU ; Zhen-Yang GU ; Chun-Ji GAO
Journal of Experimental Hematology 2025;33(3):738-744
OBJECTIVE:
To investigate the characteristics of gut microbiota changes in patients with acute myeloid leukemia (AML) undergoing induction chemotherapy and to explore the relationship between infectious complications and gut microbiota.
METHODS:
Fecal samples were collected from 37 newly diagnosed AML patients at four time points: before induction chemotherapy, during chemotherapy, during the neutropenic phase, and during the recovery phase. Metagenomic sequencing was used to analyze the dynamic changes in gut microbiota. Correlation analyses were conducted to assess the relationship between changes in gut microbiota and the occurrence of infectious complications.
RESULTS:
During chemotherapy, the gut microbiota α-diversity (Shannon index) of AML patients exhibited significant fluctuations. Specifically, the diversity decreased significantly during induction chemotherapy, further declined during the neutropenic phase (P < 0.05, compared to baseline), and gradually recovered during the recovery phase, though not fully returning to baseline levels.The abundances of beneficial bacteria, such as Firmicutes and Bacteroidetes, gradually decreased during chemotherapy, whereas the abundances of opportunistic pathogens, including Enterococcus, Klebsiella, and Escherichia coli, progressively increased.Analysis of the dynamic changes in gut microbiota of seven patients with bloodstream infections revealed that the bloodstream infection pathogens could be detected in the gut microbiota of the corresponding patients, with their abundance gradually increasing during the course of infection. This finding suggests that bloodstream infections may be associated with opportunistic pathogens originating from the gut microbiota.Compared to non-infected patients, the baseline samples of infected patients showed a significantly lower relative abundance of Bacteroidetes (P < 0.05). Regression analysis indicated that Bacteroidetes abundance is an independent predictive factor for infectious complications (P < 0.05, OR =13.143).
CONCLUSION
During induction chemotherapy in AML patients, gut microbiota α-diversity fluctuates significantly, and the abundance of opportunistic pathogens increase, which may be associated with bloodstream infections. Patients with lower baseline Bacteroidetes abundance are more prone to infections, and its abundance can serve as an independent predictor of infectious complications.
Humans
;
Gastrointestinal Microbiome
;
Leukemia, Myeloid, Acute/microbiology*
;
Induction Chemotherapy
;
Feces/microbiology*
;
Male
;
Female
;
Middle Aged
6.Hippocampal Extracellular Matrix Protein Laminin β1 Regulates Neuropathic Pain and Pain-Related Cognitive Impairment.
Ying-Chun LI ; Pei-Yang LIU ; Hai-Tao LI ; Shuai WANG ; Yun-Xin SHI ; Zhen-Zhen LI ; Wen-Guang CHU ; Xia LI ; Wan-Neng LIU ; Xing-Xing ZHENG ; Fei WANG ; Wen-Juan HAN ; Jie ZHANG ; Sheng-Xi WU ; Rou-Gang XIE ; Ceng LUO
Neuroscience Bulletin 2025;41(12):2127-2147
Patients suffering from nerve injury often experience exacerbated pain responses and complain of memory deficits. The dorsal hippocampus (dHPC), a well-defined region responsible for learning and memory, displays maladaptive plasticity upon injury, which is assumed to underlie pain hypersensitivity and cognitive deficits. However, much attention has thus far been paid to intracellular mechanisms of plasticity rather than extracellular alterations that might trigger and facilitate intracellular changes. Emerging evidence has shown that nerve injury alters the microarchitecture of the extracellular matrix (ECM) and decreases ECM rigidity in the dHPC. Despite this, it remains elusive which element of the ECM in the dHPC is affected and how it contributes to neuropathic pain and comorbid cognitive deficits. Laminin, a key element of the ECM, consists of α-, β-, and γ-chains and has been implicated in several pathophysiological processes. Here, we showed that peripheral nerve injury downregulates laminin β1 (LAMB1) in the dHPC. Silencing of hippocampal LAMB1 exacerbates pain sensitivity and induces cognitive dysfunction. Further mechanistic analysis revealed that loss of hippocampal LAMB1 causes dysregulated Src/NR2A signaling cascades via interaction with integrin β1, leading to decreased Ca2+ levels in pyramidal neurons, which in turn orchestrates structural and functional plasticity and eventually results in exaggerated pain responses and cognitive deficits. In this study, we shed new light on the functional capability of hippocampal ECM LAMB1 in the modulation of neuropathic pain and comorbid cognitive deficits, and reveal a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified hippocampal LAMB1/integrin β1 signaling as a potential therapeutic target for the treatment of neuropathic pain and related memory loss.
Animals
;
Laminin/genetics*
;
Hippocampus/metabolism*
;
Neuralgia/metabolism*
;
Cognitive Dysfunction/etiology*
;
Male
;
Peripheral Nerve Injuries/metabolism*
;
Extracellular Matrix/metabolism*
;
Integrin beta1/metabolism*
;
Pyramidal Cells/metabolism*
;
Signal Transduction
8.Two cases of systemic mastocytosis with RUNX1-RUNX1T1 positive acute myeloid leukemia treated with sequential avapritinib after allogeneic hematopoietic stem cell transplantation and literature review
Juan WANG ; Yingling ZU ; Ruirui GUI ; Zhen LI ; Yanli ZHANG ; Jian ZHOU
Chinese Journal of Hematology 2024;45(5):505-508
Systemic mastocytosis (SM) with RUNX1-RUNX1T1 positive acute myeloid leukemia (AML) is a rare myeloid tumor with no standard treatment. Two cases of SM patients with RUNX1-RUNX1T1 positive AML treated with sequential avapritinib after allogeneic hematopoietic stem cell transplantation (allo-HSCT) were reported in Henan Cancer Hospital. Mast cell in bone marrow disappeared, C-KIT mutation and RUNX1-RUNX1T1 fusion gene remained negative. Allo-HSCT sequential avapritinib is an effective treatment for SM patients with RUNX1-RUNX1T1 positive AML.
9.The efficacy and safety of avapritinib in the treatment of molecular biologically positive core binding factor-acute myeloid leukemia with KIT mutation after allogeneic hematopoietic stem cell transplantation
Juan WANG ; Yingling ZU ; Ruirui GUI ; Zhen LI ; Yanli ZHANG ; Jian ZHOU
Chinese Journal of Hematology 2024;45(8):761-766
Objective:To investigate the efficacy and safety of avapritinib in the treatment of molecular biologically positive core binding factor-acute myeloid leukemia (CBF-AML) with KIT mutation after allogeneic hematopoietic stem cell transplantation (allo-HSCT) .Methods:We retrospectively analyzed the clinical data of six patients with molecular biologically positive CBF-AML with KIT mutation after allo-HSCT, who were treated with avapritinib at Henan Cancer Hospital from December 2021 to March 2023, and evaluated the efficacy and safety of avapritinib.Results:After 1 month of treatment with avapritinib, the transcription level of the fusion gene decreased in six patients, and the transcription level decreased by ≥1 log in five patients. In four patients who received avapritinib for ≥3 months, the fusion gene turned negative, and the median time to turn negative was 2.0 (range: 1.0-3.0) months. Up to the end of follow-up, four patients had no recurrence. The most common adverse reaction of avapritinib was myelosuppression, including neutropenia in two cases, thrombocytopenia in two cases, and anemia in one case. The non-hematological adverse reactions were nausea in two cases, edema in one case, and memory loss in one case, all of which were grades 1-2.Conclusion:Avapritinib was effective for molecular biologically positive CBF-AML patients with KIT mutation after allo-HSCT. The main adverse reaction was myelosuppression, which could generally be tolerated.
10.Design of GIS-based 3D playback system for flight human-plane data
La-Mei SHANG ; Yu-Fei QIN ; Wen WANG ; Wan-Qi LI ; Da-Long GUO ; Xiao-Chao GUO ; Juan LIU ; Zhen TIAN ; Ting-Ting CUI ; Yu-Bin ZHOU
Chinese Medical Equipment Journal 2024;45(10):14-19
Objective To develop a GIS-based 3D playback system for the flight human-plane data to realize the fusion of pilots'airborne flight data and physiological data.Methods The 3D playback system was developed with the Browser/Server(B/S)architecture,micro-server model,Java language and Spring Cloud technology framework,which was composed of three functional modules for flight process reproduction,physiological situational awareness and critical event calibration analysis.Results The system developed achieved time synchronization and data fusion of airborne flight data and physiological data with a time synchronization frequency of 1 Hz and a refresh rate of not less than 120 frames/s.Conclusion The system developed with high safety,stability,reliability and accuracy facilitates pilot in-flight physiological monitoring and fusion and simultaneous display of airborne flight data and physiological data,which can be used as an important platform for decision-making support in flight training.[Chinese Medical Equipment Journal,2024,45(10):14-19]

Result Analysis
Print
Save
E-mail