1.Testis necrosis following repeated misdiagnosis of testicular torsion: a case report and literature review.
Ji-Qing ZHANG ; Xiao-Peng HU ; Xiu-Zhen KONG ; Ming-Liang HUANG ; Ju-Min GOU ; Jia-Hui LIU ; Xiao-Dong ZHANG
National Journal of Andrology 2009;15(5):445-448
OBJECTIVETo improve clinicians' ability of diagnosing testicular torsion.
METHODSWe reviewed the data of a case of testicular torsion that resulted in necrosis because of delayed presentation and repeated misdiagnosis, and analyzed its anatomic features, clinical manifestations, ultrasound results, the causes of misdiagnosis and relevant literature.
RESULTSThe patient presented 5 hours after the onset of symptoms, complaining of severe paroxysmal pain in the lower left abdomen, accompanied with nausea and vomiting, and was twice misdiagnosed as having enterospasm or ureteral calculus at two different hospitals. Fifteen hours later, surgical exploration revealed an about 900-degree testicular torsion in the spermatic cord, which necessitated orchiectomy for non viability of the testis. Postoperative pathological examination confirmed testicular necrosis and diffused hemorrhage in the testis and epididymis.
CONCLUSIONTimely presentation, correct diagnosis and proper treatment are keys to saving the affected testis. Color Doppler ultrasound is an ideal option for the definite diagnosis of acute scrotal diseases, and it offers a valuable guidance for related surgery as well.
Adult ; Diagnostic Errors ; Humans ; Male ; Necrosis ; Spermatic Cord Torsion ; diagnosis ; Testis ; pathology
2.Blockade of airway inflammation and hyper-responsiveness by an angiopoietin-1 variant, COMP-Ang1.
Kyung Sun LEE ; Ka Young LEE ; So Ri KIM ; Hee Sun PARK ; Seoung Ju PARK ; Kyung Hoon MIN ; Chung Hyun CHO ; Gou Young KOH ; Ho Sung PARK ; Yong Chul LEE
Experimental & Molecular Medicine 2007;39(6):733-745
Inflammation of the asthmatic airway is usually accompanied by increased vascular permeability and plasma exudation. Angiopoietin-1 (Ang1) has potential therapeutic applications in preventing vascular leakage. Recently, we developed a soluble, stable, and potent Ang1 variant, COMP-Ang1. COMP-Ang1 is more potent than native Ang1 in phosphorylating the tyrosine kinase with immunoglobulin and epidermal growth factor homology domain 2 receptor in lung endothelial cells. We have used a mouse model for allergic airway disease to determine effects of COMP-Ang1 on allergen-induced bronchial inflammation and airway hyper-responsiveness. These mice develop the following typical pathophysiological features of allergic airway disease in the lungs: increased numbers of inflammatory cells of the airways, airway hyper-responsiveness, increased levels of Th2 cell cytokines (IL-4, IL-5, and IL-13), adhesion molecules (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1), and chemokines (eotaxin and RANTES), and increased vascular permeability. Intravenous administration of COMP-Ang1 reduced bronchial inflammation and airway hyper-responsiveness. In addition, the increased plasma extravasation in allergic airway disease was significantly reduced by the administration of COMP-Ang1. These results suggest that COMP-Ang1 attenuates airway inflammation and hyper-responsiveness, prevents vascular leakage, and may be used as a therapeutic agent in allergic airway disease.
Allergens/immunology
;
Angiopoietin-1/genetics/pharmacology/*therapeutic use
;
Animals
;
Asthma/*prevention & control
;
Bronchial Hyperreactivity/physiopathology/prevention & control
;
Chemokines/metabolism
;
Inflammation/pathology/*prevention & control
;
Mice
;
Mice, Inbred C57BL
;
Recombinant Fusion Proteins/*therapeutic use
3.Angiopoietin-1 variant, COMP-Ang1 attenuates hydrogen peroxide-induced acute lung injury.
So Ri KIM ; Kyung Sun LEE ; Seoung Ju PARK ; Kyung Hoon MIN ; Ka Young LEE ; Yeong Hun CHOE ; Sang Hyun HONG ; Gou Young KOH ; Yong Chul LEE
Experimental & Molecular Medicine 2008;40(3):320-331
Reactive oxygen species (ROS) play a crucial role in acute lung injury. Tissue inflammation, the increased vascular permeability, and plasma exudation are cardinal features of acute lung injury. Angiopoietin-1 (Ang1) has potential therapeutic applications in preventing vascular leakage and also has beneficial effects in several inflammatory disorders. Recently developed COMP-Ang1 is more potent than native Ang1 in phosphorylating tyrosine kinase with immunoglobulin and EGF homology domain 2 receptor in endothelial cells. However, there are no data on effects and related molecular mechanisms of COMP- Ang1 on ROS-induced acute lung injury. We used hydrogen peroxide (H2O2)-inhaled mice to evaluate the effect of COMP-Ang1 on pulmonary inflammation, bronchial hyper-responsiveness, and vascular leakage in acute lung injury. The results have revealed that VEGF expression, the levels of IL-4, TNF-alpha, IL-1 beta, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in lungs, the levels of hypoxia-inducible factor-1alpha (HIF-1 alpha) and NF-kappa B in nuclear protein extracts, phosphorylation of Akt, and vascular permeability were increased after inhalation of H2O2 and that the administration of COMP-Ang1 markedly reduced airway hyper-responsiveness, pulmonary inflammation, plasma extravasation, and the increases of cytokines, adhesion molecules, and VEGF in lungs treated with H2O2. We have also found that the activation of HIF-1a and NF-kappa B and the increase of phosphoinositide 3-kinase activity in lung tissues after H2O2 inhalation were decreased by the administration of COMP-Ang1. These results suggest that COMP-Ang1 ameliorates ROS-induced acute lung injury through attenuating vascular leakage and modulating inflammatory mediators.
Acute Lung Injury/chemically induced/complications/*drug therapy/metabolism
;
Administration, Inhalation
;
Airway Resistance/drug effects
;
Animals
;
Bronchial Hyperreactivity/drug therapy/etiology
;
Bronchoalveolar Lavage Fluid
;
Capillary Permeability/*drug effects
;
Cytokines/antagonists & inhibitors
;
Female
;
Hydrogen Peroxide/adverse effects
;
Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
;
Intercellular Adhesion Molecule-1/metabolism
;
Mice
;
Mice, Inbred BALB C
;
NF-kappa B/antagonists & inhibitors
;
Pneumonia/*drug therapy/etiology
;
Recombinant Fusion Proteins/*administration & dosage
;
Vascular Cell Adhesion Molecule-1/metabolism
4.Pharmacological Inhibition of Macrophage Toll-like Receptor 4/Nuclear Factor-kappa B Alleviates Rhabdomyolysis-induced Acute Kidney Injury.
Rong-Shuang HUANG ; Jiao-Jiao ZHOU ; Yu-Ying FENG ; Min SHI ; Fan GUO ; Shen-Ju GOU ; Stephen SALERNO ; Liang MA ; Ping FU
Chinese Medical Journal 2017;130(18):2163-2169
Background:Acute kidney injury (AKI) is the most common and life-threatening systemic complication of rhabdomyolysis. Inflammation plays an important role in the development of rhabdomyolysis-induced AKI. This study aimed to investigate the kidney model of AKI caused by rhabdomyolysis to verify the role of macrophage Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling pathway.
Methods:C57BL/6 mice were injected with a 50% glycerin solution at bilateral back limbs to induce rhabdomyolysis, and CLI-095 or pyrrolidine dithiocarbamate (PDTC) was intraperitoneally injected at 0.5 h before molding. Serum creatinine levels, creatine kinase, the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, and hematoxylin and eosin stainings of kidney tissues were tested. The infiltration of macrophage, mRNA levels, and protein expression of TLR4 and NF-κB were investigated by immunofluorescence double-staining techniques, reverse transcriptase-quantitative polymerase chain reaction, and Western blotting, respectively. In vitro, macrophage RAW264.7 was stimulated by ferrous myoglobin; the cytokines, TLR4 and NF-κB expressions were also detected.
Results:In an in vivo study, using CLI-095 or PDTC to block TLR4/NF-κB, functional and histologic results showed that the inhibition of TLR4 or NF-κB alleviated glycerol-induced renal damages (P < 0.01). CLI-095 or PDTC administration suppressed proinflammatory cytokine (TNF-α, IL-6, and IL-1β) production and macrophage infiltration into the kidney (P < 0.01). Moreover, in an in vitro study, CLI-095 or PDTC suppressed myoglobin-induced expression of TLR4, NF-κB, and proinflammatory cytokine levels in macrophage RAW264.7 cells (P < 0.01).
Conclusion:The pharmacological inhibition of TLR4/NF-κB exhibited protective effects on rhabdomyolysis-induced AKI by the regulation of proinflammatory cytokine production and macrophage infiltration.