1.Resection Via Transpalatal Approach of Huge Solitary Fibrous Tumor Involving Pterygopalatine Fossa
Jang Wook GWAK ; Sea Eun YI ; Yeong Ju LEE ; Myeong Sang YU
Korean Journal of Otolaryngology - Head and Neck Surgery 2023;66(1):44-49
Solitary fibrous tumors (SFTs) are spindle-cell tumors that rarely arise within extrathoracic area. Massive SFTs involving the pterygopalatine fossa are extremely rare and surgical excision represents a multidisciplinary surgical challenge. We present a case of 64-year-old female with a huge mass originating from the pterygopalatine fossa invading the skull base. Distinct microscopic findings and a positive nuclear staining of signal transducer and activator of transcription 6 (STAT-6) pathologically confirmed SFT. The right internal maxillary artery branch was embolized preoperatively and a surgical excision was performed through a combined technique of transpalatal, mid-facial degloving and endoscopic approach. Postoperative radiotherapy successfully removed the remnant tumor adjacent to the carvenous sinus. Follow- up MR images showed no evidence of recurrence for two years. To our knowledge, there has been no previous report of the successful treatment of this vast extent of SFT in the pterygopalatine region via endoscopic-external-combined approach and radiotherapy.
2.Quetiapine competitively inhibits 5-HT3 receptor-mediatedcurrents in NCB20 neuroblastoma cells
Yong Soo PARK ; Gyu Min KIM ; Ho Jun SUNG ; Ju Yeong YU ; Ki-Wug SUNG
The Korean Journal of Physiology and Pharmacology 2025;29(3):373-384
The 5-hydroxytryptamine type3 (5-HT3 ) receptor, a ligand-gated ion channel, plays a critical role in synaptic transmission. It has been implicated in various neuropsychiatric disorders. This study aimed to elucidate the mechanism by which quetiapine, an atypical antipsychotic, could inhibit 5-HT3 receptor-mediated currents in NCB20 neuroblastoma cells. Whole-cell patch-clamp recordings were used to study effects of quetiapine on receptor ion channel kinetics and its competitive antagonism. Co-application of quetiapine shifted 5-HT concentration-response curve rightward, significantly increasing the EC50 without altering the maximal response (Emax ), suggesting a competitive inhibition. Quetiapine's IC50 varied with 5-HT concentration and treatment condition. The IC50 value of quetiapine was 0.58 μM with 3μM 5-HT and 25.23 μM with 10 μM 5-HT, indicating an inverse relationship between quetiapine efficacy and agonist concentration. Pretreatment of quetiapine significantly enhanced its inhibitory potency, reducing its IC50 from 25.23 μM to 0.20 μM.Interaction kinetics experiments revealed an IC50 of 5.17 μM for an open state of the 5-HT3 receptor, suggesting weaker affinity during receptor activation. Quetiapine also accelerated receptor deactivation and desensitization, suggesting that it could stabilize the receptor in non-conducting states. Additionally, quetiapine significantly prolonged recovery from desensitization without affecting recovery from deactivation, demonstrating its selective impact on receptor kinetics. Inhibition of the 5-HT3 receptor by quetiapine was voltage-independent, and quetiapine exhibited no usedependency, further supporting its role as a competitive antagonist. These findings provide insights into inhibitory mechanism of quetiapine on 5-HT3 receptor and suggest its potential therapeutic implications for modulating serotonergic pathways in neuropsychiatric disorders.
3.Haloperidol, a typical antipsychotic, inhibits 5-HT3 receptor-mediated currents in NCB-20 cells: a whole-cell patch-clamp study
Yong Soo PARK ; Gyu Min KIM ; Ho Jun SUNG ; Ju Yeong YU ; Ki-Wug SUNG
The Korean Journal of Physiology and Pharmacology 2025;29(3):349-358
Haloperidol is a typical antipsychotic drug effective in alleviating positive symptoms of schizophrenia by blocking dopamine receptor 2 (DR2). However, it is also known to produce neuropsychiatric effects by acting on various targets other than DR. In this study, we investigated effect of haloperidol on function of 5-hydroxytryptamine (5-HT) 3 receptor, a ligand-gated ion channel belonging to the serotonin receptor family using the whole-cell voltage clamp technique and NCB20 neuroblastoma cells. When co-applied with 5-HT, haloperidol inhibited 5-HT3 receptormediated currents in a concentration-dependent manner. A reduction in maximal effect (E max ) and an increase in EC 50 observed during co-application indicated that haloperidol could act as a non-competitive antagonist of 5-HT3 receptors. Haloperidol inhibited the activation of 5-HT3 receptor, while also accelerating their deactivation and desensitization. The inhibitory effect of haloperidol showed no significant difference between pre- and co-application. Haloperidol did not alter the reversal potential of 5-HT3 receptor currents. Furthermore, haloperidol did not affect recovery from deactivation or desensitization of 5-HT3 receptors. It did not show a use-dependent inhibition either. These findings suggest that haloperidol can exert its inhibitory effect on 5-HT3 receptors by allosterically preventing opening of ion channels. This mechanistic insight enhances our understanding of relationships between 5-HT3 receptors and pharmacological actions of antipsychotics.
4.Quetiapine competitively inhibits 5-HT3 receptor-mediatedcurrents in NCB20 neuroblastoma cells
Yong Soo PARK ; Gyu Min KIM ; Ho Jun SUNG ; Ju Yeong YU ; Ki-Wug SUNG
The Korean Journal of Physiology and Pharmacology 2025;29(3):373-384
The 5-hydroxytryptamine type3 (5-HT3 ) receptor, a ligand-gated ion channel, plays a critical role in synaptic transmission. It has been implicated in various neuropsychiatric disorders. This study aimed to elucidate the mechanism by which quetiapine, an atypical antipsychotic, could inhibit 5-HT3 receptor-mediated currents in NCB20 neuroblastoma cells. Whole-cell patch-clamp recordings were used to study effects of quetiapine on receptor ion channel kinetics and its competitive antagonism. Co-application of quetiapine shifted 5-HT concentration-response curve rightward, significantly increasing the EC50 without altering the maximal response (Emax ), suggesting a competitive inhibition. Quetiapine's IC50 varied with 5-HT concentration and treatment condition. The IC50 value of quetiapine was 0.58 μM with 3μM 5-HT and 25.23 μM with 10 μM 5-HT, indicating an inverse relationship between quetiapine efficacy and agonist concentration. Pretreatment of quetiapine significantly enhanced its inhibitory potency, reducing its IC50 from 25.23 μM to 0.20 μM.Interaction kinetics experiments revealed an IC50 of 5.17 μM for an open state of the 5-HT3 receptor, suggesting weaker affinity during receptor activation. Quetiapine also accelerated receptor deactivation and desensitization, suggesting that it could stabilize the receptor in non-conducting states. Additionally, quetiapine significantly prolonged recovery from desensitization without affecting recovery from deactivation, demonstrating its selective impact on receptor kinetics. Inhibition of the 5-HT3 receptor by quetiapine was voltage-independent, and quetiapine exhibited no usedependency, further supporting its role as a competitive antagonist. These findings provide insights into inhibitory mechanism of quetiapine on 5-HT3 receptor and suggest its potential therapeutic implications for modulating serotonergic pathways in neuropsychiatric disorders.
5.Haloperidol, a typical antipsychotic, inhibits 5-HT3 receptor-mediated currents in NCB-20 cells: a whole-cell patch-clamp study
Yong Soo PARK ; Gyu Min KIM ; Ho Jun SUNG ; Ju Yeong YU ; Ki-Wug SUNG
The Korean Journal of Physiology and Pharmacology 2025;29(3):349-358
Haloperidol is a typical antipsychotic drug effective in alleviating positive symptoms of schizophrenia by blocking dopamine receptor 2 (DR2). However, it is also known to produce neuropsychiatric effects by acting on various targets other than DR. In this study, we investigated effect of haloperidol on function of 5-hydroxytryptamine (5-HT) 3 receptor, a ligand-gated ion channel belonging to the serotonin receptor family using the whole-cell voltage clamp technique and NCB20 neuroblastoma cells. When co-applied with 5-HT, haloperidol inhibited 5-HT3 receptormediated currents in a concentration-dependent manner. A reduction in maximal effect (E max ) and an increase in EC 50 observed during co-application indicated that haloperidol could act as a non-competitive antagonist of 5-HT3 receptors. Haloperidol inhibited the activation of 5-HT3 receptor, while also accelerating their deactivation and desensitization. The inhibitory effect of haloperidol showed no significant difference between pre- and co-application. Haloperidol did not alter the reversal potential of 5-HT3 receptor currents. Furthermore, haloperidol did not affect recovery from deactivation or desensitization of 5-HT3 receptors. It did not show a use-dependent inhibition either. These findings suggest that haloperidol can exert its inhibitory effect on 5-HT3 receptors by allosterically preventing opening of ion channels. This mechanistic insight enhances our understanding of relationships between 5-HT3 receptors and pharmacological actions of antipsychotics.
6.Quetiapine competitively inhibits 5-HT3 receptor-mediatedcurrents in NCB20 neuroblastoma cells
Yong Soo PARK ; Gyu Min KIM ; Ho Jun SUNG ; Ju Yeong YU ; Ki-Wug SUNG
The Korean Journal of Physiology and Pharmacology 2025;29(3):373-384
The 5-hydroxytryptamine type3 (5-HT3 ) receptor, a ligand-gated ion channel, plays a critical role in synaptic transmission. It has been implicated in various neuropsychiatric disorders. This study aimed to elucidate the mechanism by which quetiapine, an atypical antipsychotic, could inhibit 5-HT3 receptor-mediated currents in NCB20 neuroblastoma cells. Whole-cell patch-clamp recordings were used to study effects of quetiapine on receptor ion channel kinetics and its competitive antagonism. Co-application of quetiapine shifted 5-HT concentration-response curve rightward, significantly increasing the EC50 without altering the maximal response (Emax ), suggesting a competitive inhibition. Quetiapine's IC50 varied with 5-HT concentration and treatment condition. The IC50 value of quetiapine was 0.58 μM with 3μM 5-HT and 25.23 μM with 10 μM 5-HT, indicating an inverse relationship between quetiapine efficacy and agonist concentration. Pretreatment of quetiapine significantly enhanced its inhibitory potency, reducing its IC50 from 25.23 μM to 0.20 μM.Interaction kinetics experiments revealed an IC50 of 5.17 μM for an open state of the 5-HT3 receptor, suggesting weaker affinity during receptor activation. Quetiapine also accelerated receptor deactivation and desensitization, suggesting that it could stabilize the receptor in non-conducting states. Additionally, quetiapine significantly prolonged recovery from desensitization without affecting recovery from deactivation, demonstrating its selective impact on receptor kinetics. Inhibition of the 5-HT3 receptor by quetiapine was voltage-independent, and quetiapine exhibited no usedependency, further supporting its role as a competitive antagonist. These findings provide insights into inhibitory mechanism of quetiapine on 5-HT3 receptor and suggest its potential therapeutic implications for modulating serotonergic pathways in neuropsychiatric disorders.
7.Haloperidol, a typical antipsychotic, inhibits 5-HT3 receptor-mediated currents in NCB-20 cells: a whole-cell patch-clamp study
Yong Soo PARK ; Gyu Min KIM ; Ho Jun SUNG ; Ju Yeong YU ; Ki-Wug SUNG
The Korean Journal of Physiology and Pharmacology 2025;29(3):349-358
Haloperidol is a typical antipsychotic drug effective in alleviating positive symptoms of schizophrenia by blocking dopamine receptor 2 (DR2). However, it is also known to produce neuropsychiatric effects by acting on various targets other than DR. In this study, we investigated effect of haloperidol on function of 5-hydroxytryptamine (5-HT) 3 receptor, a ligand-gated ion channel belonging to the serotonin receptor family using the whole-cell voltage clamp technique and NCB20 neuroblastoma cells. When co-applied with 5-HT, haloperidol inhibited 5-HT3 receptormediated currents in a concentration-dependent manner. A reduction in maximal effect (E max ) and an increase in EC 50 observed during co-application indicated that haloperidol could act as a non-competitive antagonist of 5-HT3 receptors. Haloperidol inhibited the activation of 5-HT3 receptor, while also accelerating their deactivation and desensitization. The inhibitory effect of haloperidol showed no significant difference between pre- and co-application. Haloperidol did not alter the reversal potential of 5-HT3 receptor currents. Furthermore, haloperidol did not affect recovery from deactivation or desensitization of 5-HT3 receptors. It did not show a use-dependent inhibition either. These findings suggest that haloperidol can exert its inhibitory effect on 5-HT3 receptors by allosterically preventing opening of ion channels. This mechanistic insight enhances our understanding of relationships between 5-HT3 receptors and pharmacological actions of antipsychotics.
8.Quetiapine competitively inhibits 5-HT3 receptor-mediatedcurrents in NCB20 neuroblastoma cells
Yong Soo PARK ; Gyu Min KIM ; Ho Jun SUNG ; Ju Yeong YU ; Ki-Wug SUNG
The Korean Journal of Physiology and Pharmacology 2025;29(3):373-384
The 5-hydroxytryptamine type3 (5-HT3 ) receptor, a ligand-gated ion channel, plays a critical role in synaptic transmission. It has been implicated in various neuropsychiatric disorders. This study aimed to elucidate the mechanism by which quetiapine, an atypical antipsychotic, could inhibit 5-HT3 receptor-mediated currents in NCB20 neuroblastoma cells. Whole-cell patch-clamp recordings were used to study effects of quetiapine on receptor ion channel kinetics and its competitive antagonism. Co-application of quetiapine shifted 5-HT concentration-response curve rightward, significantly increasing the EC50 without altering the maximal response (Emax ), suggesting a competitive inhibition. Quetiapine's IC50 varied with 5-HT concentration and treatment condition. The IC50 value of quetiapine was 0.58 μM with 3μM 5-HT and 25.23 μM with 10 μM 5-HT, indicating an inverse relationship between quetiapine efficacy and agonist concentration. Pretreatment of quetiapine significantly enhanced its inhibitory potency, reducing its IC50 from 25.23 μM to 0.20 μM.Interaction kinetics experiments revealed an IC50 of 5.17 μM for an open state of the 5-HT3 receptor, suggesting weaker affinity during receptor activation. Quetiapine also accelerated receptor deactivation and desensitization, suggesting that it could stabilize the receptor in non-conducting states. Additionally, quetiapine significantly prolonged recovery from desensitization without affecting recovery from deactivation, demonstrating its selective impact on receptor kinetics. Inhibition of the 5-HT3 receptor by quetiapine was voltage-independent, and quetiapine exhibited no usedependency, further supporting its role as a competitive antagonist. These findings provide insights into inhibitory mechanism of quetiapine on 5-HT3 receptor and suggest its potential therapeutic implications for modulating serotonergic pathways in neuropsychiatric disorders.
9.Haloperidol, a typical antipsychotic, inhibits 5-HT3 receptor-mediated currents in NCB-20 cells: a whole-cell patch-clamp study
Yong Soo PARK ; Gyu Min KIM ; Ho Jun SUNG ; Ju Yeong YU ; Ki-Wug SUNG
The Korean Journal of Physiology and Pharmacology 2025;29(3):349-358
Haloperidol is a typical antipsychotic drug effective in alleviating positive symptoms of schizophrenia by blocking dopamine receptor 2 (DR2). However, it is also known to produce neuropsychiatric effects by acting on various targets other than DR. In this study, we investigated effect of haloperidol on function of 5-hydroxytryptamine (5-HT) 3 receptor, a ligand-gated ion channel belonging to the serotonin receptor family using the whole-cell voltage clamp technique and NCB20 neuroblastoma cells. When co-applied with 5-HT, haloperidol inhibited 5-HT3 receptormediated currents in a concentration-dependent manner. A reduction in maximal effect (E max ) and an increase in EC 50 observed during co-application indicated that haloperidol could act as a non-competitive antagonist of 5-HT3 receptors. Haloperidol inhibited the activation of 5-HT3 receptor, while also accelerating their deactivation and desensitization. The inhibitory effect of haloperidol showed no significant difference between pre- and co-application. Haloperidol did not alter the reversal potential of 5-HT3 receptor currents. Furthermore, haloperidol did not affect recovery from deactivation or desensitization of 5-HT3 receptors. It did not show a use-dependent inhibition either. These findings suggest that haloperidol can exert its inhibitory effect on 5-HT3 receptors by allosterically preventing opening of ion channels. This mechanistic insight enhances our understanding of relationships between 5-HT3 receptors and pharmacological actions of antipsychotics.
10.Quetiapine competitively inhibits 5-HT3 receptor-mediatedcurrents in NCB20 neuroblastoma cells
Yong Soo PARK ; Gyu Min KIM ; Ho Jun SUNG ; Ju Yeong YU ; Ki-Wug SUNG
The Korean Journal of Physiology and Pharmacology 2025;29(3):373-384
The 5-hydroxytryptamine type3 (5-HT3 ) receptor, a ligand-gated ion channel, plays a critical role in synaptic transmission. It has been implicated in various neuropsychiatric disorders. This study aimed to elucidate the mechanism by which quetiapine, an atypical antipsychotic, could inhibit 5-HT3 receptor-mediated currents in NCB20 neuroblastoma cells. Whole-cell patch-clamp recordings were used to study effects of quetiapine on receptor ion channel kinetics and its competitive antagonism. Co-application of quetiapine shifted 5-HT concentration-response curve rightward, significantly increasing the EC50 without altering the maximal response (Emax ), suggesting a competitive inhibition. Quetiapine's IC50 varied with 5-HT concentration and treatment condition. The IC50 value of quetiapine was 0.58 μM with 3μM 5-HT and 25.23 μM with 10 μM 5-HT, indicating an inverse relationship between quetiapine efficacy and agonist concentration. Pretreatment of quetiapine significantly enhanced its inhibitory potency, reducing its IC50 from 25.23 μM to 0.20 μM.Interaction kinetics experiments revealed an IC50 of 5.17 μM for an open state of the 5-HT3 receptor, suggesting weaker affinity during receptor activation. Quetiapine also accelerated receptor deactivation and desensitization, suggesting that it could stabilize the receptor in non-conducting states. Additionally, quetiapine significantly prolonged recovery from desensitization without affecting recovery from deactivation, demonstrating its selective impact on receptor kinetics. Inhibition of the 5-HT3 receptor by quetiapine was voltage-independent, and quetiapine exhibited no usedependency, further supporting its role as a competitive antagonist. These findings provide insights into inhibitory mechanism of quetiapine on 5-HT3 receptor and suggest its potential therapeutic implications for modulating serotonergic pathways in neuropsychiatric disorders.