1.Quality of Early Depression Management and Long-Term Medical Use: Aspect of Quality Indicatorsfor Outpatients with Depression
Hyun Ho LIM ; Jae Kwang LEE ; Sunyoung PARK ; Jhin Goo CHANG ; Jooyoung OH ; Jaesub PARK ; Jungeun SONG
Mood and Emotion 2023;21(3):95-103
Background:
Depression is a global mental health concern that negatively affects individuals’ health and increases medical costs. This study aimed to assess whether early depression management is cost-beneficial and effective from the perspective of quality indicators.
Methods:
Data of patients newly diagnosed with depressive disorder between 2012 and 2014 as well as follow-up data until 2020 were extracted from the National Health Insurance Service database. Hospitalization, emergency room visits, and annual medical expenses were set as dependent variables to estimate the effect of depression and information on medical expenditures. Six quality indicators developed by the Health Insurance Review and Assessment Service comprised independent variables.
Results:
In total, 465,766 patients were included in this study. Patients who met the quality indicators were more likely to be hospitalized with a psychiatric diagnosis. Furthermore, patients who met the quality indicator of revisiting within 3 weeks of their first visit had greater psychiatric and overall expenses during the early treatment phase; however, the overall expenses gradually decreased over time.
Conclusion
High-quality initial treatment for depression can be cost-effective in the long term; however, further studies are needed to discern its immediate clinical effects.
2.Association between Skeletal Muscle Mass and Ocular Perfusion Pressure in Glaucoma
Jisoo KANG ; Ji Hong KIM ; Yu Jeong KIM ; Han Woong LIM ; Jooyoung YOON ; Won June LEE
Korean Journal of Ophthalmology 2025;39(3):246-260
Purpose:
This study aimed to investigate the relationship between body composition and glaucoma by analyzing the associations between anthropometric and ocular parameters.
Methods:
A total of 494 eyes from 247 patients were reviewed from a general health examination database at a tertiary hospital. Anthropometric parameters were assessed using a multifrequency bioelectrical impedance device. Mean ocular perfusion pressure (MOPP) was calculated based on systolic and diastolic blood pressures and intraocular pressure (IOP). Retinal thickness and other ocular parameters were analyzed for their association with body composition.
Results:
A total of 221 eyes from 221 patients, including 104 with glaucoma, were enrolled in the final analysis. The prevalence of sarcopenia was significantly higher in patients with glaucomatous damage than in those without (p = 0.025). Higher IOP showed significant associations with lower MOPP (p < 0.001), higher body mass index (BMI; p = 0.001), and higher waist to hip ratio (p = 0.001). Retinal thickness was not significantly associated with body composition parameters, including BMI and appendicular lean mass adjusted with squared height. Higher MOPP was significantly correlated with lower IOP (p < 0.001), higher BMI (p < 0.001), higher waist to hip ratio (p < 0.001), and higher appendicular lean mass divided by squared height (p = 0.009).
Conclusions
Skeletal muscle mass and BMI were significantly associated with MOPP. Since low MOPP is a known risk factor for glaucoma, its association with skeletal muscle mass may indicate a relationship between systemic muscle health, ocular blood perfusion, and glaucomatous damage. Further large-scale studies are needed to validate these associations between skeletal muscle mass and glaucoma and explore their clinical implications.
3.Association between Skeletal Muscle Mass and Ocular Perfusion Pressure in Glaucoma
Jisoo KANG ; Ji Hong KIM ; Yu Jeong KIM ; Han Woong LIM ; Jooyoung YOON ; Won June LEE
Korean Journal of Ophthalmology 2025;39(3):246-260
Purpose:
This study aimed to investigate the relationship between body composition and glaucoma by analyzing the associations between anthropometric and ocular parameters.
Methods:
A total of 494 eyes from 247 patients were reviewed from a general health examination database at a tertiary hospital. Anthropometric parameters were assessed using a multifrequency bioelectrical impedance device. Mean ocular perfusion pressure (MOPP) was calculated based on systolic and diastolic blood pressures and intraocular pressure (IOP). Retinal thickness and other ocular parameters were analyzed for their association with body composition.
Results:
A total of 221 eyes from 221 patients, including 104 with glaucoma, were enrolled in the final analysis. The prevalence of sarcopenia was significantly higher in patients with glaucomatous damage than in those without (p = 0.025). Higher IOP showed significant associations with lower MOPP (p < 0.001), higher body mass index (BMI; p = 0.001), and higher waist to hip ratio (p = 0.001). Retinal thickness was not significantly associated with body composition parameters, including BMI and appendicular lean mass adjusted with squared height. Higher MOPP was significantly correlated with lower IOP (p < 0.001), higher BMI (p < 0.001), higher waist to hip ratio (p < 0.001), and higher appendicular lean mass divided by squared height (p = 0.009).
Conclusions
Skeletal muscle mass and BMI were significantly associated with MOPP. Since low MOPP is a known risk factor for glaucoma, its association with skeletal muscle mass may indicate a relationship between systemic muscle health, ocular blood perfusion, and glaucomatous damage. Further large-scale studies are needed to validate these associations between skeletal muscle mass and glaucoma and explore their clinical implications.
4.Association between Skeletal Muscle Mass and Ocular Perfusion Pressure in Glaucoma
Jisoo KANG ; Ji Hong KIM ; Yu Jeong KIM ; Han Woong LIM ; Jooyoung YOON ; Won June LEE
Korean Journal of Ophthalmology 2025;39(3):246-260
Purpose:
This study aimed to investigate the relationship between body composition and glaucoma by analyzing the associations between anthropometric and ocular parameters.
Methods:
A total of 494 eyes from 247 patients were reviewed from a general health examination database at a tertiary hospital. Anthropometric parameters were assessed using a multifrequency bioelectrical impedance device. Mean ocular perfusion pressure (MOPP) was calculated based on systolic and diastolic blood pressures and intraocular pressure (IOP). Retinal thickness and other ocular parameters were analyzed for their association with body composition.
Results:
A total of 221 eyes from 221 patients, including 104 with glaucoma, were enrolled in the final analysis. The prevalence of sarcopenia was significantly higher in patients with glaucomatous damage than in those without (p = 0.025). Higher IOP showed significant associations with lower MOPP (p < 0.001), higher body mass index (BMI; p = 0.001), and higher waist to hip ratio (p = 0.001). Retinal thickness was not significantly associated with body composition parameters, including BMI and appendicular lean mass adjusted with squared height. Higher MOPP was significantly correlated with lower IOP (p < 0.001), higher BMI (p < 0.001), higher waist to hip ratio (p < 0.001), and higher appendicular lean mass divided by squared height (p = 0.009).
Conclusions
Skeletal muscle mass and BMI were significantly associated with MOPP. Since low MOPP is a known risk factor for glaucoma, its association with skeletal muscle mass may indicate a relationship between systemic muscle health, ocular blood perfusion, and glaucomatous damage. Further large-scale studies are needed to validate these associations between skeletal muscle mass and glaucoma and explore their clinical implications.
5.Association between Skeletal Muscle Mass and Ocular Perfusion Pressure in Glaucoma
Jisoo KANG ; Ji Hong KIM ; Yu Jeong KIM ; Han Woong LIM ; Jooyoung YOON ; Won June LEE
Korean Journal of Ophthalmology 2025;39(3):246-260
Purpose:
This study aimed to investigate the relationship between body composition and glaucoma by analyzing the associations between anthropometric and ocular parameters.
Methods:
A total of 494 eyes from 247 patients were reviewed from a general health examination database at a tertiary hospital. Anthropometric parameters were assessed using a multifrequency bioelectrical impedance device. Mean ocular perfusion pressure (MOPP) was calculated based on systolic and diastolic blood pressures and intraocular pressure (IOP). Retinal thickness and other ocular parameters were analyzed for their association with body composition.
Results:
A total of 221 eyes from 221 patients, including 104 with glaucoma, were enrolled in the final analysis. The prevalence of sarcopenia was significantly higher in patients with glaucomatous damage than in those without (p = 0.025). Higher IOP showed significant associations with lower MOPP (p < 0.001), higher body mass index (BMI; p = 0.001), and higher waist to hip ratio (p = 0.001). Retinal thickness was not significantly associated with body composition parameters, including BMI and appendicular lean mass adjusted with squared height. Higher MOPP was significantly correlated with lower IOP (p < 0.001), higher BMI (p < 0.001), higher waist to hip ratio (p < 0.001), and higher appendicular lean mass divided by squared height (p = 0.009).
Conclusions
Skeletal muscle mass and BMI were significantly associated with MOPP. Since low MOPP is a known risk factor for glaucoma, its association with skeletal muscle mass may indicate a relationship between systemic muscle health, ocular blood perfusion, and glaucomatous damage. Further large-scale studies are needed to validate these associations between skeletal muscle mass and glaucoma and explore their clinical implications.
6.Association between Skeletal Muscle Mass and Ocular Perfusion Pressure in Glaucoma
Jisoo KANG ; Ji Hong KIM ; Yu Jeong KIM ; Han Woong LIM ; Jooyoung YOON ; Won June LEE
Korean Journal of Ophthalmology 2025;39(3):246-260
Purpose:
This study aimed to investigate the relationship between body composition and glaucoma by analyzing the associations between anthropometric and ocular parameters.
Methods:
A total of 494 eyes from 247 patients were reviewed from a general health examination database at a tertiary hospital. Anthropometric parameters were assessed using a multifrequency bioelectrical impedance device. Mean ocular perfusion pressure (MOPP) was calculated based on systolic and diastolic blood pressures and intraocular pressure (IOP). Retinal thickness and other ocular parameters were analyzed for their association with body composition.
Results:
A total of 221 eyes from 221 patients, including 104 with glaucoma, were enrolled in the final analysis. The prevalence of sarcopenia was significantly higher in patients with glaucomatous damage than in those without (p = 0.025). Higher IOP showed significant associations with lower MOPP (p < 0.001), higher body mass index (BMI; p = 0.001), and higher waist to hip ratio (p = 0.001). Retinal thickness was not significantly associated with body composition parameters, including BMI and appendicular lean mass adjusted with squared height. Higher MOPP was significantly correlated with lower IOP (p < 0.001), higher BMI (p < 0.001), higher waist to hip ratio (p < 0.001), and higher appendicular lean mass divided by squared height (p = 0.009).
Conclusions
Skeletal muscle mass and BMI were significantly associated with MOPP. Since low MOPP is a known risk factor for glaucoma, its association with skeletal muscle mass may indicate a relationship between systemic muscle health, ocular blood perfusion, and glaucomatous damage. Further large-scale studies are needed to validate these associations between skeletal muscle mass and glaucoma and explore their clinical implications.
7.Impaired Osteogenesis in Human Induced Pluripotent Stem Cells with Acetaldehyde Dehydrogenase 2 Mutations
Jooyoung LIM ; Heeju HAN ; Se In JUNG ; Yeri Alice RIM ; Ji Hyeon JU
International Journal of Stem Cells 2024;17(3):284-297
Acetaldehyde dehydrogenase 2 (ALDH2) is the second enzyme involved in the breakdown of acetaldehyde into acetic acid during the process of alcohol metabolism. Roughly 40% of East Asians carry one or two ALDH2*2 alleles, and the presence of ALDH2 genetic mutations in individuals may affect the bone remodeling cycle owing to accumulation of acetaldehyde in the body. In this study, we investigated the effects of ALDH2 mutations on bone remodeling. In this study, we examined the effects of ALDH2 polymorphisms on in vitro osteogensis using human induced pluripotent stem cells (hiPSCs). We differentiated wild-type (ALDH2*1/*1-) and ALDH2*1/*2-genotyped hiPSCs into osteoblasts (OBs) and confirmed their OB characteristics. Acetaldehyde was administered to confirm the impact caused by the mutation during OB differentiation. Calcium deposits formed during osteogenesis were significantly decreased in ALDH2*1/*2 OBs. The expression of osteogenic markers were also decreased in acetaldehyde-treated OBs differentiated from the ALDH2*1/*2 hiPSCs. Furthermore, the impact of ALDH2 polymorphism and acetaldehyde-induced stress on inflammatory factors such as 4-hydroxynonenal and tumor necrosis factor α was confirmed. Our findings suggest that individuals with ALDH2 deficiency may face challenges in acetaldehyde breakdown, rendering them susceptible to disturbances in normal bone remodeling therefore, caution should be exercised regarding alcohol consumption. In this proof-of-concept study, we were able to suggest these findings as a result of a disease-in-a-dish concept using hiPSCs derived from individuals bearing a certain mutation. This study also shows the potential of patient-derived hiPSCs for disease modeling with a specific condition.
8.The Effect of Nerve Growth Factor on Cartilage Fibrosis and Hypertrophy during In Vitro Chondrogenesis Using Induced Pluripotent Stem Cells
Se In JUNG ; Si Hwa CHOI ; Jang-Woon KIM ; Jooyoung LIM ; Yeri Alice RIM ; Ji Hyeon JU
International Journal of Stem Cells 2025;18(1):59-71
Nerve growth factor (NGF) is a neurotrophic factor usually involved in the survival, differentiation, and growth of sensory neurons and nociceptive function. Yet, it has been suggested to play a role in the pathogenesis of osteoarthritis (OA). Previous studies suggested a possible relationship between NGF and OA; however, the underlying mechanisms remain unknown. Therefore, we investigated the impact of NGF in chondrogenesis using human induced pluripotent stem cells (hiPSCs)-derived chondrogenic pellets. To investigate how NGF affects the cartilage tissue, hiPSC-derived chondrogenic pellets were treated with NGF on day 3 of differentiation, expression of chondrogenic, hypertrophic, and fibrotic markers was confirmed. Also, inflammatory cytokine arrays were performed using the culture medium of the NGF treated chondrogenic pellets. As a result, NGF treatment decreased the expression of pro-chondrogenic markers by approximately 2∼4 times, and hypertrophic (pro-osteogenic) markers and fibrotic markers were increased by approximately 3-fold or more in the NGF-treated cartilaginous pellets. In addition, angiogenesis was upregulated by approximately 4-fold or more, bone formation by more than 2-fold, and matrix metalloproteinase induction by more than 2-fold. These inflammatory cytokine array were using the NGF-treated chondrogenic pellet cultured medium.Furthermore, it was confirmed by Western blot to be related to the induction of the glycogen synthase kinase-3 beta (GSK3β) pathway by NGF. In Conclusions, these findings provide valuable insights into the multifaceted role of NGF in cartilage hypertrophy and fibrosis, which might play a critical role in OA progression.
9.The Effect of Nerve Growth Factor on Cartilage Fibrosis and Hypertrophy during In Vitro Chondrogenesis Using Induced Pluripotent Stem Cells
Se In JUNG ; Si Hwa CHOI ; Jang-Woon KIM ; Jooyoung LIM ; Yeri Alice RIM ; Ji Hyeon JU
International Journal of Stem Cells 2025;18(1):59-71
Nerve growth factor (NGF) is a neurotrophic factor usually involved in the survival, differentiation, and growth of sensory neurons and nociceptive function. Yet, it has been suggested to play a role in the pathogenesis of osteoarthritis (OA). Previous studies suggested a possible relationship between NGF and OA; however, the underlying mechanisms remain unknown. Therefore, we investigated the impact of NGF in chondrogenesis using human induced pluripotent stem cells (hiPSCs)-derived chondrogenic pellets. To investigate how NGF affects the cartilage tissue, hiPSC-derived chondrogenic pellets were treated with NGF on day 3 of differentiation, expression of chondrogenic, hypertrophic, and fibrotic markers was confirmed. Also, inflammatory cytokine arrays were performed using the culture medium of the NGF treated chondrogenic pellets. As a result, NGF treatment decreased the expression of pro-chondrogenic markers by approximately 2∼4 times, and hypertrophic (pro-osteogenic) markers and fibrotic markers were increased by approximately 3-fold or more in the NGF-treated cartilaginous pellets. In addition, angiogenesis was upregulated by approximately 4-fold or more, bone formation by more than 2-fold, and matrix metalloproteinase induction by more than 2-fold. These inflammatory cytokine array were using the NGF-treated chondrogenic pellet cultured medium.Furthermore, it was confirmed by Western blot to be related to the induction of the glycogen synthase kinase-3 beta (GSK3β) pathway by NGF. In Conclusions, these findings provide valuable insights into the multifaceted role of NGF in cartilage hypertrophy and fibrosis, which might play a critical role in OA progression.
10.The Effect of Nerve Growth Factor on Cartilage Fibrosis and Hypertrophy during In Vitro Chondrogenesis Using Induced Pluripotent Stem Cells
Se In JUNG ; Si Hwa CHOI ; Jang-Woon KIM ; Jooyoung LIM ; Yeri Alice RIM ; Ji Hyeon JU
International Journal of Stem Cells 2025;18(1):59-71
Nerve growth factor (NGF) is a neurotrophic factor usually involved in the survival, differentiation, and growth of sensory neurons and nociceptive function. Yet, it has been suggested to play a role in the pathogenesis of osteoarthritis (OA). Previous studies suggested a possible relationship between NGF and OA; however, the underlying mechanisms remain unknown. Therefore, we investigated the impact of NGF in chondrogenesis using human induced pluripotent stem cells (hiPSCs)-derived chondrogenic pellets. To investigate how NGF affects the cartilage tissue, hiPSC-derived chondrogenic pellets were treated with NGF on day 3 of differentiation, expression of chondrogenic, hypertrophic, and fibrotic markers was confirmed. Also, inflammatory cytokine arrays were performed using the culture medium of the NGF treated chondrogenic pellets. As a result, NGF treatment decreased the expression of pro-chondrogenic markers by approximately 2∼4 times, and hypertrophic (pro-osteogenic) markers and fibrotic markers were increased by approximately 3-fold or more in the NGF-treated cartilaginous pellets. In addition, angiogenesis was upregulated by approximately 4-fold or more, bone formation by more than 2-fold, and matrix metalloproteinase induction by more than 2-fold. These inflammatory cytokine array were using the NGF-treated chondrogenic pellet cultured medium.Furthermore, it was confirmed by Western blot to be related to the induction of the glycogen synthase kinase-3 beta (GSK3β) pathway by NGF. In Conclusions, these findings provide valuable insights into the multifaceted role of NGF in cartilage hypertrophy and fibrosis, which might play a critical role in OA progression.