1.Perioperative Nurse's Experience of Nursing Errors and Emotional Distress, Coping Strategies, and Changes in Practice.
Journal of Korean Academy of Nursing Administration 2014;20(5):481-491
PURPOSE: This study was done to examine perioperative nurses' perception of the definitions and causes of nursing errors; the relationships among emotional distress, coping strategies, and changes in practice as a result of errors. METHODS: A descriptive, correlative design was used with a sample of 146 nurses working in the operating room of a university hospital. Data were collected using a self-report questionnaire with 4 point Likert scales. For the analysis, t-test, ANOVA, Scheffe's post hoc test and multiple regression analysis were used. RESULTS: Most nurses recognized themajority of the items as perioperative nursing errors. Job overload was perceived as the cause of errors. Emotional distress was significantly related with nurses' age, position and years of work experience. The coping strategies used most frequently were 'accepting responsibility' and 'planful problem solving'. The coping strategies of 'accepting responsibility', 'planful problem solving', 'seeking social support', and 'using self-control' were significant predictors in constructive practice change. Defensive changes were related to the strategy of escape/avoidance and emotional distress. CONCLUSION: The results of this study suggest that intervention strategies should be developed to decrease perioperative nurses'distress and improve their coping strategies resulting in constructive change in practice after committing an error.
Medical Errors
;
Nursing*
;
Operating Rooms
;
Perioperative Nursing
;
Surveys and Questionnaires
;
Weights and Measures
2.Current Status of Nursing Informatics Education in Korea.
Eunjoo JEON ; Jeongeun KIM ; Hyeoun Ae PARK ; Ji Hyun LEE ; Jungha KIM ; Meiling JIN ; Shinae AHN ; Jooyeon JUN ; Healim SONG ; Jeongah ON ; Hyesil JUNG ; Yeong Joo HONG ; Suran YIM
Healthcare Informatics Research 2016;22(2):142-150
OBJECTIVES: This study presents the current status of nursing informatics education, the content covered in nursing informatics courses, the faculty efficacy, and the barriers to and additional supports for teaching nursing informatics in Korea. METHODS: A set of questionnaires consisting of an 18-item questionnaire for nursing informatics education, a 6-item questionnaire for faculty efficacy, and 2 open-ended questions for barriers and additional supports were sent to 204 nursing schools via email and the postal service. Nursing schools offering nursing informatics were further asked to send their syllabuses. The subjects taught were analyzed using nursing informatics competency categories and other responses were tailed using descriptive statistics. RESULTS: A total of 72 schools (35.3%) responded to the survey, of which 38 reported that they offered nursing informatics courses in their undergraduate nursing programs. Nursing informatics courses at 11 schools were taught by a professor with a degree majoring in nursing informatics. Computer technology was the most frequently taught subject (27 schools), followed by information systems used for practice (25 schools). The faculty efficacy was 3.76 ± 0.86 (out of 5). The most frequently reported barrier to teaching nursing informatics (n = 9) was lack of awareness of the importance of nursing informatics. Training and educational opportunities was the most requested additional support. CONCLUSIONS: Nursing informatics education has increased during the last decade in Korea. However, the proportions of faculty with degrees in nursing informatics and number of schools offering nursing informatics courses have not increased much. Thus, a greater focus is needed on training faculty and developing the courses.
Competency-Based Education
;
Education*
;
Electronic Mail
;
Humans
;
Information Systems
;
Korea*
;
Nursing Education Research
;
Nursing Informatics*
;
Nursing*
;
Postal Service
;
Schools, Nursing
;
Tail
3.Current Status of Nursing Informatics Education in Korea.
Eunjoo JEON ; Jeongeun KIM ; Hyeoun Ae PARK ; Ji Hyun LEE ; Jungha KIM ; Meiling JIN ; Shinae AHN ; Jooyeon JUN ; Healim SONG ; Jeongah ON ; Hyesil JUNG ; Yeong Joo HONG ; Suran YIM
Healthcare Informatics Research 2016;22(2):142-150
OBJECTIVES: This study presents the current status of nursing informatics education, the content covered in nursing informatics courses, the faculty efficacy, and the barriers to and additional supports for teaching nursing informatics in Korea. METHODS: A set of questionnaires consisting of an 18-item questionnaire for nursing informatics education, a 6-item questionnaire for faculty efficacy, and 2 open-ended questions for barriers and additional supports were sent to 204 nursing schools via email and the postal service. Nursing schools offering nursing informatics were further asked to send their syllabuses. The subjects taught were analyzed using nursing informatics competency categories and other responses were tailed using descriptive statistics. RESULTS: A total of 72 schools (35.3%) responded to the survey, of which 38 reported that they offered nursing informatics courses in their undergraduate nursing programs. Nursing informatics courses at 11 schools were taught by a professor with a degree majoring in nursing informatics. Computer technology was the most frequently taught subject (27 schools), followed by information systems used for practice (25 schools). The faculty efficacy was 3.76 ± 0.86 (out of 5). The most frequently reported barrier to teaching nursing informatics (n = 9) was lack of awareness of the importance of nursing informatics. Training and educational opportunities was the most requested additional support. CONCLUSIONS: Nursing informatics education has increased during the last decade in Korea. However, the proportions of faculty with degrees in nursing informatics and number of schools offering nursing informatics courses have not increased much. Thus, a greater focus is needed on training faculty and developing the courses.
Competency-Based Education
;
Education*
;
Electronic Mail
;
Humans
;
Information Systems
;
Korea*
;
Nursing Education Research
;
Nursing Informatics*
;
Nursing*
;
Postal Service
;
Schools, Nursing
;
Tail
4.Corrigendum to “Cyclic Phytosphingosine-1-Phosphate Primed Mesenchymal Stem Cells Ameliorate LPS-Induced Acute Lung Injury in Mice”
Youngheon PARK ; Jimin JANG ; Jooyeon LEE ; Hyosin BAEK ; Jaehyun PARK ; Sang-Ryul CHA ; Se Bi LEE ; Sunghun NA ; Jae-Woo KWON ; Young Jun PARK ; Myeong Jun CHOI ; Kye-Seong KIM ; Seok-Ho HONG ; Se-Ran YANG
International Journal of Stem Cells 2023;16(4):448-449
5.Laboratory information management system for COVID-19 non-clinical efficacy trial data
Suhyeon YOON ; Hyuna NOH ; Heejin JIN ; Sungyoung LEE ; Soyul HAN ; Sung-Hee KIM ; Jiseon KIM ; Jung Seon SEO ; Jeong Jin KIM ; In Ho PARK ; Jooyeon OH ; Joon-Yong BAE ; Gee Eun LEE ; Sun-Je WOO ; Sun-Min SEO ; Na-Won KIM ; Youn Woo LEE ; Hui Jeong JANG ; Seung-Min HONG ; Se-Hee AN ; Kwang-Soo LYOO ; Minjoo YEOM ; Hanbyeul LEE ; Bud JUNG ; Sun-Woo YOON ; Jung-Ah KANG ; Sang-Hyuk SEOK ; Yu Jin LEE ; Seo Yeon KIM ; Young Been KIM ; Ji-Yeon HWANG ; Dain ON ; Soo-Yeon LIM ; Sol Pin KIM ; Ji Yun JANG ; Ho LEE ; Kyoungmi KIM ; Hyo-Jung LEE ; Hong Bin KIM ; Jun Won PARK ; Dae Gwin JEONG ; Daesub SONG ; Kang-Seuk CHOI ; Ho-Young LEE ; Yang-Kyu CHOI ; Jung-ah CHOI ; Manki SONG ; Man-Seong PARK ; Jun-Young SEO ; Ki Taek NAM ; Jeon-Soo SHIN ; Sungho WON ; Jun-Won YUN ; Je Kyung SEONG
Laboratory Animal Research 2022;38(2):119-127
Background:
As the number of large-scale studies involving multiple organizations producing data has steadily increased, an integrated system for a common interoperable format is needed. In response to the coronavirus disease 2019 (COVID-19) pandemic, a number of global efforts are underway to develop vaccines and therapeutics. We are therefore observing an explosion in the proliferation of COVID-19 data, and interoperability is highly requested in multiple institutions participating simultaneously in COVID-19 pandemic research.
Results:
In this study, a laboratory information management system (LIMS) approach has been adopted to systemically manage various COVID-19 non-clinical trial data, including mortality, clinical signs, body weight, body temperature, organ weights, viral titer (viral replication and viral RNA), and multiorgan histopathology, from multiple institutions based on a web interface. The main aim of the implemented system is to integrate, standardize, and organize data collected from laboratories in multiple institutes for COVID-19 non-clinical efficacy testings. Six animal biosafety level 3 institutions proved the feasibility of our system. Substantial benefits were shown by maximizing collaborative high-quality non-clinical research.
Conclusions
This LIMS platform can be used for future outbreaks, leading to accelerated medical product development through the systematic management of extensive data from non-clinical animal studies.
6.Immune Cells Are DifferentiallyAffected by SARS-CoV-2 Viral Loads in K18-hACE2 Mice
Jung Ah KIM ; Sung-Hee KIM ; Jeong Jin KIM ; Hyuna NOH ; Su-bin LEE ; Haengdueng JEONG ; Jiseon KIM ; Donghun JEON ; Jung Seon SEO ; Dain ON ; Suhyeon YOON ; Sang Gyu LEE ; Youn Woo LEE ; Hui Jeong JANG ; In Ho PARK ; Jooyeon OH ; Sang-Hyuk SEOK ; Yu Jin LEE ; Seung-Min HONG ; Se-Hee AN ; Joon-Yong BAE ; Jung-ah CHOI ; Seo Yeon KIM ; Young Been KIM ; Ji-Yeon HWANG ; Hyo-Jung LEE ; Hong Bin KIM ; Dae Gwin JEONG ; Daesub SONG ; Manki SONG ; Man-Seong PARK ; Kang-Seuk CHOI ; Jun Won PARK ; Jun-Won YUN ; Jeon-Soo SHIN ; Ho-Young LEE ; Ho-Keun KWON ; Jun-Young SEO ; Ki Taek NAM ; Heon Yung GEE ; Je Kyung SEONG
Immune Network 2024;24(2):e7-
Viral load and the duration of viral shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important determinants of the transmission of coronavirus disease 2019.In this study, we examined the effects of viral doses on the lung and spleen of K18-hACE2 transgenic mice by temporal histological and transcriptional analyses. Approximately, 1×105 plaque-forming units (PFU) of SARS-CoV-2 induced strong host responses in the lungs from 2 days post inoculation (dpi) which did not recover until the mice died, whereas responses to the virus were obvious at 5 days, recovering to the basal state by 14 dpi at 1×102 PFU. Further, flow cytometry showed that number of CD8+ T cells continuously increased in 1×102 PFU-virusinfected lungs from 2 dpi, but not in 1×105 PFU-virus-infected lungs. In spleens, responses to the virus were prominent from 2 dpi, and number of B cells was significantly decreased at 1×105PFU; however, 1×102 PFU of virus induced very weak responses from 2 dpi which recovered by 10 dpi. Although the defense responses returned to normal and the mice survived, lung histology showed evidence of fibrosis, suggesting sequelae of SARS-CoV-2 infection. Our findings indicate that specific effectors of the immune response in the lung and spleen were either increased or depleted in response to doses of SARS-CoV-2. This study demonstrated that the response of local and systemic immune effectors to a viral infection varies with viral dose, which either exacerbates the severity of the infection or accelerates its elimination.