1.AI-ECG Supported Decision-Making for Coronary Angiography in Acute Chest Pain: The QCG-AID Study
Jiesuck PARK ; Joonghee KIM ; Soyeon AHN ; Youngjin CHO ; Yeonyee E. YOON
Journal of Korean Medical Science 2025;40(12):e105-
This pilot study evaluates an artificial intelligence (AI)-assisted electrocardiography (ECG) analysis system, QCG, to enhance urgent coronary angiography (CAG) decision-making for acute chest pain in the emergency department (ED). We retrospectively analyzed 300 ED cases, categorized as non-coronary chest pain (Group 1), acute coronary syndrome (ACS) without occlusive coronary artery disease (CAD) (Group 2), and ACS with occlusive CAD (Group 3). Six clinicians made urgent CAG decision using a conventional approach (clinical data and ECG) and a QCG-assisted approach (including QCG scores). The QCG-assisted approach improved correct CAG decisions in Group 2 (36.0% vs. 45.3%, P = 0.003) and Group 3 (85.3% vs. 90.0%, P = 0.017), with minimal impact in Group 1 (92.7% vs. 95.0%, P = 0.125). Diagnostic accuracy for ACS improved from 77% to 81% with QCG assistance and reached 82% with QCG alone, supporting AI's potential to enhance urgent CAG decisionmaking for ED chest pain cases.
2.AI-ECG Supported Decision-Making for Coronary Angiography in Acute Chest Pain: The QCG-AID Study
Jiesuck PARK ; Joonghee KIM ; Soyeon AHN ; Youngjin CHO ; Yeonyee E. YOON
Journal of Korean Medical Science 2025;40(12):e105-
This pilot study evaluates an artificial intelligence (AI)-assisted electrocardiography (ECG) analysis system, QCG, to enhance urgent coronary angiography (CAG) decision-making for acute chest pain in the emergency department (ED). We retrospectively analyzed 300 ED cases, categorized as non-coronary chest pain (Group 1), acute coronary syndrome (ACS) without occlusive coronary artery disease (CAD) (Group 2), and ACS with occlusive CAD (Group 3). Six clinicians made urgent CAG decision using a conventional approach (clinical data and ECG) and a QCG-assisted approach (including QCG scores). The QCG-assisted approach improved correct CAG decisions in Group 2 (36.0% vs. 45.3%, P = 0.003) and Group 3 (85.3% vs. 90.0%, P = 0.017), with minimal impact in Group 1 (92.7% vs. 95.0%, P = 0.125). Diagnostic accuracy for ACS improved from 77% to 81% with QCG assistance and reached 82% with QCG alone, supporting AI's potential to enhance urgent CAG decisionmaking for ED chest pain cases.
3.AI-ECG Supported Decision-Making for Coronary Angiography in Acute Chest Pain: The QCG-AID Study
Jiesuck PARK ; Joonghee KIM ; Soyeon AHN ; Youngjin CHO ; Yeonyee E. YOON
Journal of Korean Medical Science 2025;40(12):e105-
This pilot study evaluates an artificial intelligence (AI)-assisted electrocardiography (ECG) analysis system, QCG, to enhance urgent coronary angiography (CAG) decision-making for acute chest pain in the emergency department (ED). We retrospectively analyzed 300 ED cases, categorized as non-coronary chest pain (Group 1), acute coronary syndrome (ACS) without occlusive coronary artery disease (CAD) (Group 2), and ACS with occlusive CAD (Group 3). Six clinicians made urgent CAG decision using a conventional approach (clinical data and ECG) and a QCG-assisted approach (including QCG scores). The QCG-assisted approach improved correct CAG decisions in Group 2 (36.0% vs. 45.3%, P = 0.003) and Group 3 (85.3% vs. 90.0%, P = 0.017), with minimal impact in Group 1 (92.7% vs. 95.0%, P = 0.125). Diagnostic accuracy for ACS improved from 77% to 81% with QCG assistance and reached 82% with QCG alone, supporting AI's potential to enhance urgent CAG decisionmaking for ED chest pain cases.
4.AI-ECG Supported Decision-Making for Coronary Angiography in Acute Chest Pain: The QCG-AID Study
Jiesuck PARK ; Joonghee KIM ; Soyeon AHN ; Youngjin CHO ; Yeonyee E. YOON
Journal of Korean Medical Science 2025;40(12):e105-
This pilot study evaluates an artificial intelligence (AI)-assisted electrocardiography (ECG) analysis system, QCG, to enhance urgent coronary angiography (CAG) decision-making for acute chest pain in the emergency department (ED). We retrospectively analyzed 300 ED cases, categorized as non-coronary chest pain (Group 1), acute coronary syndrome (ACS) without occlusive coronary artery disease (CAD) (Group 2), and ACS with occlusive CAD (Group 3). Six clinicians made urgent CAG decision using a conventional approach (clinical data and ECG) and a QCG-assisted approach (including QCG scores). The QCG-assisted approach improved correct CAG decisions in Group 2 (36.0% vs. 45.3%, P = 0.003) and Group 3 (85.3% vs. 90.0%, P = 0.017), with minimal impact in Group 1 (92.7% vs. 95.0%, P = 0.125). Diagnostic accuracy for ACS improved from 77% to 81% with QCG assistance and reached 82% with QCG alone, supporting AI's potential to enhance urgent CAG decisionmaking for ED chest pain cases.
5.Non-Inferiority Analysis of Electrocardiography Analysis Application vs. Point-of-Care Ultrasound for Screening Left Ventricular Dysfunction
Jin Hee KIM ; Jae Yun JUNG ; Joonghee KIM ; Youngjin CHO ; Eunkyoung LEE ; Dahyeon SON
Yonsei Medical Journal 2025;66(3):172-178
Purpose:
Point-of-care ultrasound (POCUS) is widely used for heart function evaluation in emergency departments (EDs), but requires specific equipment and skilled operators. This study evaluates the diagnostic accuracy of a mobile application for estimating left ventricular (LV) systolic dysfunction [left ventricular ejection fraction (LVEF) <40%] using electrocardiography (ECG) and tests its non-inferiority to POCUS.
Materials and Methods:
Patients (aged ≥20 years) were included if they had both a POCUS-based EF evaluation and an ECG within 24 hours of their ED visit between January and May 2022, along with formal echocardiography within 2 weeks before or after the visit. A mobile app (ECG Buddy, EB) estimated LVEF (EF from EB) and the risk of LV dysfunction (LV-Dysfunction score) from ECG waveforms, which were compared to NT-proBNP levels and POCUS-evaluated LVEF (EF from POCUS). A non-inferiority margin was set at an area under the curve (AUC) difference of 0.05.
Results:
Of the 181 patients included, 37 (20.4%) exhibited LV dysfunction. The AUCs for screening LV dysfunction using POCUS and NT-proBNP were 0.885 and 0.822, respectively. EF from EB and LV-Dysfunction score outperformed NT-proBNP, with AUCs of 0.893 and 0.884, respectively (p=0.017 and p=0.030, respectively). EF from EB was non-inferior to EF from POCUS, while LV-Dysfunction score narrowly missed the mark. A subgroup analysis of sinus-origin rhythm ECGs supported the non-inferiority of both EF from EB and LV-Dysfunction score to EF from POCUS.
Conclusion
A smartphone application that analyzes ECG image can screen for LV dysfunction with a level of accuracy comparable to that of POCUS.
6.Non-Inferiority Analysis of Electrocardiography Analysis Application vs. Point-of-Care Ultrasound for Screening Left Ventricular Dysfunction
Jin Hee KIM ; Jae Yun JUNG ; Joonghee KIM ; Youngjin CHO ; Eunkyoung LEE ; Dahyeon SON
Yonsei Medical Journal 2025;66(3):172-178
Purpose:
Point-of-care ultrasound (POCUS) is widely used for heart function evaluation in emergency departments (EDs), but requires specific equipment and skilled operators. This study evaluates the diagnostic accuracy of a mobile application for estimating left ventricular (LV) systolic dysfunction [left ventricular ejection fraction (LVEF) <40%] using electrocardiography (ECG) and tests its non-inferiority to POCUS.
Materials and Methods:
Patients (aged ≥20 years) were included if they had both a POCUS-based EF evaluation and an ECG within 24 hours of their ED visit between January and May 2022, along with formal echocardiography within 2 weeks before or after the visit. A mobile app (ECG Buddy, EB) estimated LVEF (EF from EB) and the risk of LV dysfunction (LV-Dysfunction score) from ECG waveforms, which were compared to NT-proBNP levels and POCUS-evaluated LVEF (EF from POCUS). A non-inferiority margin was set at an area under the curve (AUC) difference of 0.05.
Results:
Of the 181 patients included, 37 (20.4%) exhibited LV dysfunction. The AUCs for screening LV dysfunction using POCUS and NT-proBNP were 0.885 and 0.822, respectively. EF from EB and LV-Dysfunction score outperformed NT-proBNP, with AUCs of 0.893 and 0.884, respectively (p=0.017 and p=0.030, respectively). EF from EB was non-inferior to EF from POCUS, while LV-Dysfunction score narrowly missed the mark. A subgroup analysis of sinus-origin rhythm ECGs supported the non-inferiority of both EF from EB and LV-Dysfunction score to EF from POCUS.
Conclusion
A smartphone application that analyzes ECG image can screen for LV dysfunction with a level of accuracy comparable to that of POCUS.
7.Non-Inferiority Analysis of Electrocardiography Analysis Application vs. Point-of-Care Ultrasound for Screening Left Ventricular Dysfunction
Jin Hee KIM ; Jae Yun JUNG ; Joonghee KIM ; Youngjin CHO ; Eunkyoung LEE ; Dahyeon SON
Yonsei Medical Journal 2025;66(3):172-178
Purpose:
Point-of-care ultrasound (POCUS) is widely used for heart function evaluation in emergency departments (EDs), but requires specific equipment and skilled operators. This study evaluates the diagnostic accuracy of a mobile application for estimating left ventricular (LV) systolic dysfunction [left ventricular ejection fraction (LVEF) <40%] using electrocardiography (ECG) and tests its non-inferiority to POCUS.
Materials and Methods:
Patients (aged ≥20 years) were included if they had both a POCUS-based EF evaluation and an ECG within 24 hours of their ED visit between January and May 2022, along with formal echocardiography within 2 weeks before or after the visit. A mobile app (ECG Buddy, EB) estimated LVEF (EF from EB) and the risk of LV dysfunction (LV-Dysfunction score) from ECG waveforms, which were compared to NT-proBNP levels and POCUS-evaluated LVEF (EF from POCUS). A non-inferiority margin was set at an area under the curve (AUC) difference of 0.05.
Results:
Of the 181 patients included, 37 (20.4%) exhibited LV dysfunction. The AUCs for screening LV dysfunction using POCUS and NT-proBNP were 0.885 and 0.822, respectively. EF from EB and LV-Dysfunction score outperformed NT-proBNP, with AUCs of 0.893 and 0.884, respectively (p=0.017 and p=0.030, respectively). EF from EB was non-inferior to EF from POCUS, while LV-Dysfunction score narrowly missed the mark. A subgroup analysis of sinus-origin rhythm ECGs supported the non-inferiority of both EF from EB and LV-Dysfunction score to EF from POCUS.
Conclusion
A smartphone application that analyzes ECG image can screen for LV dysfunction with a level of accuracy comparable to that of POCUS.
8.Non-Inferiority Analysis of Electrocardiography Analysis Application vs. Point-of-Care Ultrasound for Screening Left Ventricular Dysfunction
Jin Hee KIM ; Jae Yun JUNG ; Joonghee KIM ; Youngjin CHO ; Eunkyoung LEE ; Dahyeon SON
Yonsei Medical Journal 2025;66(3):172-178
Purpose:
Point-of-care ultrasound (POCUS) is widely used for heart function evaluation in emergency departments (EDs), but requires specific equipment and skilled operators. This study evaluates the diagnostic accuracy of a mobile application for estimating left ventricular (LV) systolic dysfunction [left ventricular ejection fraction (LVEF) <40%] using electrocardiography (ECG) and tests its non-inferiority to POCUS.
Materials and Methods:
Patients (aged ≥20 years) were included if they had both a POCUS-based EF evaluation and an ECG within 24 hours of their ED visit between January and May 2022, along with formal echocardiography within 2 weeks before or after the visit. A mobile app (ECG Buddy, EB) estimated LVEF (EF from EB) and the risk of LV dysfunction (LV-Dysfunction score) from ECG waveforms, which were compared to NT-proBNP levels and POCUS-evaluated LVEF (EF from POCUS). A non-inferiority margin was set at an area under the curve (AUC) difference of 0.05.
Results:
Of the 181 patients included, 37 (20.4%) exhibited LV dysfunction. The AUCs for screening LV dysfunction using POCUS and NT-proBNP were 0.885 and 0.822, respectively. EF from EB and LV-Dysfunction score outperformed NT-proBNP, with AUCs of 0.893 and 0.884, respectively (p=0.017 and p=0.030, respectively). EF from EB was non-inferior to EF from POCUS, while LV-Dysfunction score narrowly missed the mark. A subgroup analysis of sinus-origin rhythm ECGs supported the non-inferiority of both EF from EB and LV-Dysfunction score to EF from POCUS.
Conclusion
A smartphone application that analyzes ECG image can screen for LV dysfunction with a level of accuracy comparable to that of POCUS.
9.Non-Inferiority Analysis of Electrocardiography Analysis Application vs. Point-of-Care Ultrasound for Screening Left Ventricular Dysfunction
Jin Hee KIM ; Jae Yun JUNG ; Joonghee KIM ; Youngjin CHO ; Eunkyoung LEE ; Dahyeon SON
Yonsei Medical Journal 2025;66(3):172-178
Purpose:
Point-of-care ultrasound (POCUS) is widely used for heart function evaluation in emergency departments (EDs), but requires specific equipment and skilled operators. This study evaluates the diagnostic accuracy of a mobile application for estimating left ventricular (LV) systolic dysfunction [left ventricular ejection fraction (LVEF) <40%] using electrocardiography (ECG) and tests its non-inferiority to POCUS.
Materials and Methods:
Patients (aged ≥20 years) were included if they had both a POCUS-based EF evaluation and an ECG within 24 hours of their ED visit between January and May 2022, along with formal echocardiography within 2 weeks before or after the visit. A mobile app (ECG Buddy, EB) estimated LVEF (EF from EB) and the risk of LV dysfunction (LV-Dysfunction score) from ECG waveforms, which were compared to NT-proBNP levels and POCUS-evaluated LVEF (EF from POCUS). A non-inferiority margin was set at an area under the curve (AUC) difference of 0.05.
Results:
Of the 181 patients included, 37 (20.4%) exhibited LV dysfunction. The AUCs for screening LV dysfunction using POCUS and NT-proBNP were 0.885 and 0.822, respectively. EF from EB and LV-Dysfunction score outperformed NT-proBNP, with AUCs of 0.893 and 0.884, respectively (p=0.017 and p=0.030, respectively). EF from EB was non-inferior to EF from POCUS, while LV-Dysfunction score narrowly missed the mark. A subgroup analysis of sinus-origin rhythm ECGs supported the non-inferiority of both EF from EB and LV-Dysfunction score to EF from POCUS.
Conclusion
A smartphone application that analyzes ECG image can screen for LV dysfunction with a level of accuracy comparable to that of POCUS.
10.A Retrospective Clinical Evaluation of an Artificial Intelligence Screening Method for Early Detection of STEMI in the Emergency Department
Dongsung KIM ; Ji Eun HWANG ; Youngjin CHO ; Hyoung-Won CHO ; Wonjae LEE ; Ji Hyun LEE ; Il-Young OH ; Sumin BAEK ; Eunkyoung LEE ; Joonghee KIM
Journal of Korean Medical Science 2022;37(10):e81-
Background:
Rapid revascularization is the key to better patient outcomes in ST-elevation myocardial infarction (STEMI). Direct activation of cardiac catheterization laboratory (CCL) using artificial intelligence (AI) interpretation of initial electrocardiography (ECG) might help reduce door-to-balloon (D2B) time. To prove that this approach is feasible and beneficial, we assessed the non-inferiority of such a process over conventional evaluation and estimated its clinical benefits, including a reduction in D2B time, medical cost, and 1-year mortality.
Methods:
This is a single-center retrospective study of emergency department (ED) patients suspected of having STEMI from January 2021 to June 2021. Quantitative ECG (QCG™), a comprehensive cardiovascular evaluation system, was used for screening. The non-inferiority of the AI-driven CCL activation over joint clinical evaluation by emergency physicians and cardiologists was tested using a 5% non-inferiority margin.
Results:
Eighty patients (STEMI, 54 patients [67.5%]) were analyzed. The area under the curve of QCG score was 0.947. Binned at 50 (binary QCG), the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were 98.1% (95% confidence interval [CI], 94.6%, 100.0%), 76.9% (95% CI, 60.7%, 93.1%), 89.8% (95% CI, 82.1%, 97.5%) and 95.2% (95% CI, 86.1%, 100.0%), respectively. The difference in sensitivity and specificity between binary QCG and the joint clinical decision was 3.7% (95% CI, −3.5%, 10.9%) and 19.2% (95% CI, −4.7%, 43.1%), respectively, confirming the non-inferiority. The estimated median reduction in D2B time, evaluation cost, and the relative risk of 1-year mortality were 11.0 minutes (interquartile range [IQR], 7.3–20.0 minutes), 26,902.2 KRW (22.78 USD) per STEMI patient, and 12.39% (IQR, 7.51–22.54%), respectively.
Conclusion
AI-assisted CCL activation using initial ECG is feasible. If such a policy is implemented, it would be reasonable to expect some reduction in D2B time, medical cost, and 1-year mortality.