1.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
2.Evaluation of Image Quality and Scan Time Efficiency in Accelerated 3D T1-Weighted Pediatric Brain MRI Using Deep Learning-Based Reconstruction
Hyunsuk YOO ; Hee Eun MOON ; Soojin KIM ; Da Hee KIM ; Young Hun CHOI ; Jeong-Eun CHEON ; Joon Sung LEE ; Seunghyun LEE
Korean Journal of Radiology 2025;26(2):180-192
Objective:
This study evaluated the effect of an accelerated three-dimensional (3D) T1-weighted pediatric brain MRI protocol using a deep learning (DL)-based reconstruction algorithm on scan time and image quality.
Materials and Methods:
This retrospective study included 46 pediatric patients who underwent conventional and accelerated, pre- and post-contrast, 3D T1-weighted brain MRI using a 3T scanner (SIGNA Premier; GE HealthCare) at a single tertiary referral center between March 1, 2023, and April 30, 2023. Conventional scans were reconstructed using intensity Filter A (Conv), whereas accelerated scans were reconstructed using intensity Filter A (Fast_A) and a DL-based algorithm (Fast_DL).Image quality was assessed quantitatively based on the coefficient of variation, relative contrast, apparent signal-to-noise ratio (aSNR), and apparent contrast-to-noise ratio (aCNR) and qualitatively according to radiologists’ ratings of overall image quality, artifacts, noisiness, gray-white matter differentiation, and lesion conspicuity.
Results:
The acquisition times for the pre- and post-contrast scans were 191 and 135 seconds, respectively, for the conventional scan. With the accelerated protocol, these were reduced to 135 and 80 seconds, achieving time reductions of 29.3% and 40.7%, respectively. DL-based reconstruction significantly reduced the coefficient of variation, improved the aSNR, aCNR, and overall image quality, and reduced the number of artifacts compared with the conventional acquisition method (all P < 0.05). However, the lesion conspicuity remained similar between the two protocols.
Conclusion
Utilizing a DL-based reconstruction algorithm in accelerated 3D T1-weighted pediatric brain MRI can significantly shorten the acquisition time, enhance image quality, and reduce artifacts, making it a viable option for pediatric imaging.
3.18F-FDOPA PET/CT in Oncology: Procedural Guideline by the KoreanSociety of Nuclear Medicine
Yong-Jin PARK ; Joon Ho CHOI ; Hyunjong LEE ; Seung Hwan MOON ; Inki LEE ; Joohee LEE ; Jang YOO ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):41-49
This guideline outlines the use of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography for the diagnosis and management of neuroendocrine tumors, brain tumors, and other tumorous conditions. It provides detailed recommendations on patient preparation, imaging procedures, and result interpretation. Based on inter-national standards and adapted to local clinical practices, the guideline emphasizes safety, quality control, and the effec-tive application of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography for various tumors such as insulinomas, pheochromocytomas, and medullary thyroid carcinoma. It also addresses the use of premedication with carbidopa, fasting protocols, and optimal imaging techniques. The aim is to assist nuclear medicine professionals in delivering precise diagnoses, improving patient outcomes, and accommodating evolving medical knowl-edge and technology. This comprehensive document serves as a practical resource to enhance the accuracy, quality, and safety of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography in oncology.
4.Update in Association between Lung Cancer and Air Pollution
Jiye YOO ; Yongchan LEE ; Youngil PARK ; Jongin LEE ; Joon Young CHOI ; Heekwan LEE ; Jeong Uk LIM
Tuberculosis and Respiratory Diseases 2025;88(2):228-236
A significant portion of newly diagnosed lung cancer cases occurs in populations exposed to air pollution. The World Health Organization has identified air pollution as a human carcinogen, prompting many countries to implement monitoring systems for ambient particulate matter (PM). PM is composed of a complex mixture of organic and inorganic particles, both solid and liquid, that are found in the air. Given the carcinogenic properties of PM and the high prevalence of lung cancer among exposed populations, exploring their connection and clinical implications is critical for effectively preventing lung cancer in this group. This review explores the relationship between ambient PM and lung cancer. Epidemiological studies have demonstrated a dose-response relationship between PM exposure and lung cancer risk. PM exposure induces oxidative stress, disrupts the body’s redox balance, and causes DNA damage, which is a crucial factor in cancer development. Recent findings on the strong correlation between ambient PM and adenocarcinoma highlight the importance of understanding the specific molecular and pathological mechanisms underlying pollution-related lung cancer. In addition to efforts to control emission sources at the international level, a more individualized approach is essential for preventing PM-related lung cancer.
5.Clinical Practice Guidelines for Dementia: Recommendations for Cholinesterase Inhibitors and Memantine
Yeshin KIM ; Dong Woo KANG ; Geon Ha KIM ; Ko Woon KIM ; Hee-Jin KIM ; Seunghee NA ; Kee Hyung PARK ; Young Ho PARK ; Gihwan BYEON ; Jeewon SUH ; Joon Hyun SHIN ; YongSoo SHIM ; YoungSoon YANG ; Yoo Hyun UM ; Seong-il OH ; Sheng-Min WANG ; Bora YOON ; Sun Min LEE ; Juyoun LEE ; Jin San LEE ; Jae-Sung LIM ; Young Hee JUNG ; Juhee CHIN ; Hyemin JANG ; Miyoung CHOI ; Yun Jeong HONG ; Hak Young RHEE ; Jae-Won JANG ;
Dementia and Neurocognitive Disorders 2025;24(1):1-23
Background:
and Purpose: This clinical practice guideline provides evidence-based recommendations for treatment of dementia, focusing on cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists for Alzheimer’s disease (AD) and other types of dementia.
Methods:
Using the Population, Intervention, Comparison, Outcomes (PICO) framework, we developed key clinical questions and conducted systematic literature reviews. A multidisciplinary panel of experts, organized by the Korean Dementia Association, evaluated randomized controlled trials and observational studies. Recommendations were graded for evidence quality and strength using Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology.
Results:
Three main recommendations are presented: (1) For AD, cholinesterase inhibitors (donepezil, rivastigmine, galantamine) are strongly recommended for improving cognition and daily function based on moderate evidence; (2) Cholinesterase inhibitors are conditionally recommended for vascular dementia and Parkinson’s disease dementia, with a strong recommendation for Lewy body dementia; (3) For moderate to severe AD, NMDA receptor antagonist (memantine) is strongly recommended, demonstrating significant cognitive and functional improvements. Both drug classes showed favorable safety profiles with manageable side effects.
Conclusions
This guideline offers standardized, evidence-based pharmacologic recommendations for dementia management, with specific guidance on cholinesterase inhibitors and NMDA receptor antagonists. It aims to support clinical decision-making and improve patient outcomes in dementia care. Further updates will address emerging treatments, including amyloid-targeting therapies, to reflect advances in dementia management.
6.Study Protocol of Expanded Multicenter Prospective Cohort Study of Active Surveillance on Papillary Thyroid Microcarcinoma (MAeSTro-EXP)
Jae Hoon MOON ; Eun Kyung LEE ; Wonjae CHA ; Young Jun CHAI ; Sun Wook CHO ; June Young CHOI ; Sung Yong CHOI ; A Jung CHU ; Eun-Jae CHUNG ; Yul HWANGBO ; Woo-Jin JEONG ; Yuh-Seog JUNG ; Kyungsik KIM ; Min Joo KIM ; Su-jin KIM ; Woochul KIM ; Yoo Hyung KIM ; Chang Yoon LEE ; Ji Ye LEE ; Kyu Eun LEE ; Young Ki LEE ; Hunjong LIM ; Do Joon PARK ; Sue K. PARK ; Chang Hwan RYU ; Junsun RYU ; Jungirl SEOK ; Young Shin SONG ; Ka Hee YI ; Hyeong Won YU ; Eleanor WHITE ; Katerina MASTROCOSTAS ; Roderick J. CLIFTON-BLIGH ; Anthony GLOVER ; Matti L. GILD ; Ji-hoon KIM ; Young Joo PARK
Endocrinology and Metabolism 2025;40(2):236-246
Background:
Active surveillance (AS) has emerged as a viable management strategy for low-risk papillary thyroid microcarcinoma (PTMC), following pioneering trials at Kuma Hospital and the Cancer Institute Hospital in Japan. Numerous prospective cohort studies have since validated AS as a management option for low-risk PTMC, leading to its inclusion in thyroid cancer guidelines across various countries. From 2016 to 2020, the Multicenter Prospective Cohort Study of Active Surveillance on Papillary Thyroid Microcarcinoma (MAeSTro) enrolled 1,177 patients, providing comprehensive data on PTMC progression, sonographic predictors of progression, quality of life, surgical outcomes, and cost-effectiveness when comparing AS to immediate surgery. The second phase of MAeSTro (MAeSTro-EXP) expands AS to low-risk papillary thyroid carcinoma (PTC) tumors larger than 1 cm, driven by the hypothesis that overall risk assessment outweighs absolute tumor size in surgical decision-making.
Methods:
This protocol aims to address whether limiting AS to tumors smaller than 1 cm may result in unnecessary surgeries for low-risk PTCs detected during their rapid initial growth phase. By expanding the AS criteria to include tumors up to 1.5 cm, while simultaneously refining and standardizing the criteria for risk assessment and disease progression, we aim to minimize overtreatment and maintain rigorous monitoring to improve patient outcomes.
Conclusion
This study will contribute to optimizing AS guidelines and enhance our understanding of the natural course and appropriate management of low-risk PTCs. Additionally, MAeSTro-EXP involves a multinational collaboration between South Korea and Australia. This cross-country study aims to identify cultural and racial differences in the management of low-risk PTC, thereby enriching the global understanding of AS practices and their applicability across diverse populations.
7.Evaluation of Image Quality and Scan Time Efficiency in Accelerated 3D T1-Weighted Pediatric Brain MRI Using Deep Learning-Based Reconstruction
Hyunsuk YOO ; Hee Eun MOON ; Soojin KIM ; Da Hee KIM ; Young Hun CHOI ; Jeong-Eun CHEON ; Joon Sung LEE ; Seunghyun LEE
Korean Journal of Radiology 2025;26(2):180-192
Objective:
This study evaluated the effect of an accelerated three-dimensional (3D) T1-weighted pediatric brain MRI protocol using a deep learning (DL)-based reconstruction algorithm on scan time and image quality.
Materials and Methods:
This retrospective study included 46 pediatric patients who underwent conventional and accelerated, pre- and post-contrast, 3D T1-weighted brain MRI using a 3T scanner (SIGNA Premier; GE HealthCare) at a single tertiary referral center between March 1, 2023, and April 30, 2023. Conventional scans were reconstructed using intensity Filter A (Conv), whereas accelerated scans were reconstructed using intensity Filter A (Fast_A) and a DL-based algorithm (Fast_DL).Image quality was assessed quantitatively based on the coefficient of variation, relative contrast, apparent signal-to-noise ratio (aSNR), and apparent contrast-to-noise ratio (aCNR) and qualitatively according to radiologists’ ratings of overall image quality, artifacts, noisiness, gray-white matter differentiation, and lesion conspicuity.
Results:
The acquisition times for the pre- and post-contrast scans were 191 and 135 seconds, respectively, for the conventional scan. With the accelerated protocol, these were reduced to 135 and 80 seconds, achieving time reductions of 29.3% and 40.7%, respectively. DL-based reconstruction significantly reduced the coefficient of variation, improved the aSNR, aCNR, and overall image quality, and reduced the number of artifacts compared with the conventional acquisition method (all P < 0.05). However, the lesion conspicuity remained similar between the two protocols.
Conclusion
Utilizing a DL-based reconstruction algorithm in accelerated 3D T1-weighted pediatric brain MRI can significantly shorten the acquisition time, enhance image quality, and reduce artifacts, making it a viable option for pediatric imaging.
8.18F-FDOPA PET/CT in Oncology: Procedural Guideline by the KoreanSociety of Nuclear Medicine
Yong-Jin PARK ; Joon Ho CHOI ; Hyunjong LEE ; Seung Hwan MOON ; Inki LEE ; Joohee LEE ; Jang YOO ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):41-49
This guideline outlines the use of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography for the diagnosis and management of neuroendocrine tumors, brain tumors, and other tumorous conditions. It provides detailed recommendations on patient preparation, imaging procedures, and result interpretation. Based on inter-national standards and adapted to local clinical practices, the guideline emphasizes safety, quality control, and the effec-tive application of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography for various tumors such as insulinomas, pheochromocytomas, and medullary thyroid carcinoma. It also addresses the use of premedication with carbidopa, fasting protocols, and optimal imaging techniques. The aim is to assist nuclear medicine professionals in delivering precise diagnoses, improving patient outcomes, and accommodating evolving medical knowl-edge and technology. This comprehensive document serves as a practical resource to enhance the accuracy, quality, and safety of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography in oncology.
9.Update in Association between Lung Cancer and Air Pollution
Jiye YOO ; Yongchan LEE ; Youngil PARK ; Jongin LEE ; Joon Young CHOI ; Heekwan LEE ; Jeong Uk LIM
Tuberculosis and Respiratory Diseases 2025;88(2):228-236
A significant portion of newly diagnosed lung cancer cases occurs in populations exposed to air pollution. The World Health Organization has identified air pollution as a human carcinogen, prompting many countries to implement monitoring systems for ambient particulate matter (PM). PM is composed of a complex mixture of organic and inorganic particles, both solid and liquid, that are found in the air. Given the carcinogenic properties of PM and the high prevalence of lung cancer among exposed populations, exploring their connection and clinical implications is critical for effectively preventing lung cancer in this group. This review explores the relationship between ambient PM and lung cancer. Epidemiological studies have demonstrated a dose-response relationship between PM exposure and lung cancer risk. PM exposure induces oxidative stress, disrupts the body’s redox balance, and causes DNA damage, which is a crucial factor in cancer development. Recent findings on the strong correlation between ambient PM and adenocarcinoma highlight the importance of understanding the specific molecular and pathological mechanisms underlying pollution-related lung cancer. In addition to efforts to control emission sources at the international level, a more individualized approach is essential for preventing PM-related lung cancer.
10.Evaluation of Image Quality and Scan Time Efficiency in Accelerated 3D T1-Weighted Pediatric Brain MRI Using Deep Learning-Based Reconstruction
Hyunsuk YOO ; Hee Eun MOON ; Soojin KIM ; Da Hee KIM ; Young Hun CHOI ; Jeong-Eun CHEON ; Joon Sung LEE ; Seunghyun LEE
Korean Journal of Radiology 2025;26(2):180-192
Objective:
This study evaluated the effect of an accelerated three-dimensional (3D) T1-weighted pediatric brain MRI protocol using a deep learning (DL)-based reconstruction algorithm on scan time and image quality.
Materials and Methods:
This retrospective study included 46 pediatric patients who underwent conventional and accelerated, pre- and post-contrast, 3D T1-weighted brain MRI using a 3T scanner (SIGNA Premier; GE HealthCare) at a single tertiary referral center between March 1, 2023, and April 30, 2023. Conventional scans were reconstructed using intensity Filter A (Conv), whereas accelerated scans were reconstructed using intensity Filter A (Fast_A) and a DL-based algorithm (Fast_DL).Image quality was assessed quantitatively based on the coefficient of variation, relative contrast, apparent signal-to-noise ratio (aSNR), and apparent contrast-to-noise ratio (aCNR) and qualitatively according to radiologists’ ratings of overall image quality, artifacts, noisiness, gray-white matter differentiation, and lesion conspicuity.
Results:
The acquisition times for the pre- and post-contrast scans were 191 and 135 seconds, respectively, for the conventional scan. With the accelerated protocol, these were reduced to 135 and 80 seconds, achieving time reductions of 29.3% and 40.7%, respectively. DL-based reconstruction significantly reduced the coefficient of variation, improved the aSNR, aCNR, and overall image quality, and reduced the number of artifacts compared with the conventional acquisition method (all P < 0.05). However, the lesion conspicuity remained similar between the two protocols.
Conclusion
Utilizing a DL-based reconstruction algorithm in accelerated 3D T1-weighted pediatric brain MRI can significantly shorten the acquisition time, enhance image quality, and reduce artifacts, making it a viable option for pediatric imaging.

Result Analysis
Print
Save
E-mail