1.A Fusion Protein of Derp2 Allergen and Flagellin Suppresses Experimental Allergic Asthma
Wenzhi TAN ; Jin Hai ZHENG ; Tra My Nu DUONG ; Young Il KOH ; Shee Eun LEE ; Joon Haeng RHEE
Allergy, Asthma & Immunology Research 2019;11(2):254-266
PURPOSE: The house dust mite (HDM) is one of the most important sources of indoor allergens and a significant cause of allergic rhinitis and allergic asthma. Our previous studies demonstrated that Vibrio vulnificus flagellin B (FlaB) plus allergen as a co-treatment mixture improved lung function and inhibited eosinophilic airway inflammation through the Toll-like receptor 5 signaling pathway in an ovalbumin (OVA)- or HDM-induced mouse asthma model. In the present study, we fused the major mite allergen Derp2 to FlaB and compared the therapeutic effects of the Derp2-FlaB fusion protein with those of a mixture of Derp2 and FlaB in a Derp2-induced mouse asthma model. METHODS: BALB/c mice sensitized with Derp2 + HDM were treated with Derp2, a Derp2 plus FlaB (Derp2 + FlaB) mixture, or the Derp2-FlaB fusion protein 3 times at 1-week intervals. Seven days after the final treatment, the mice were challenged intranasally with Derp2, and airway responses and Derp2-specific immune responses were evaluated. RESULTS: The Derp2-FlaB fusion protein was significantly more efficacious in reducing airway hyperresponsiveness, lung eosinophil infiltration, and Derp2-specific IgE than the Derp2 + FlaB mixture. CONCLUSIONS: The Derp2-FlaB fusion protein showed a strong anti-asthma immunomodulatory capacity, leading to the prevention of airway inflammatory responses in a murine disease model through the inhibition of Th2 responses. These findings suggest that the Derp2-FlaB fusion protein would be a promising vaccine candidate for HDM-mediated allergic asthma therapy.
Allergens
;
Animals
;
Asthma
;
Eosinophils
;
Flagellin
;
Immunoglobulin E
;
Inflammation
;
Lung
;
Mice
;
Mites
;
Ovalbumin
;
Pyroglyphidae
;
Rhinitis, Allergic
;
Therapeutic Uses
;
Toll-Like Receptor 5
;
Vibrio vulnificus
2.Comparative Study of Esophageal Self-expandable Metallic Stent Insertion and Gastrostomy Feeding for Dysphagia Caused by Lung Cancer.
Jihye KIM ; Yang Won MIN ; Hyuk LEE ; Byung Hoon MIN ; Joon Haeng LEE ; Poong Lyul RHEE ; Jae J KIM
The Korean Journal of Gastroenterology 2018;71(3):124-131
BACKGROUND/AIMS: Dysphagia is encountered in a large proportion of patients with lung cancer and is associated with malnutrition and a poor quality of life. This study compared the clinical outcomes of self-expandable metallic stent (SEMS) insertion and percutaneous gastrostomy (PG) feeding for patients with lung cancer and dysphagia. METHODS: A total of 261 patients with lung cancer, who underwent either SEMS insertion (stent group) or PG (gastrostomy group) as an initial treatment procedure for dysphagia between July 1997 and July 2015 at the Samsung Medical Center, were reviewed retrospectively, and 84 patients with esophageal obstruction were identified. The clinical outcomes, including the overall survival, additional intervention, complications, and post-procedural nutritional status in the two groups, were compared. RESULTS: Among the 84 patients finally analyzed, 68 patients received SEMS insertion and 16 had PG. The stent group had less cervical obstruction and more mid-esophageal obstruction than the gastrostomy group. The Kaplan-Meier curves revealed similar overall survival in the two groups. Multivariate analysis showed that the two modalities had similar survival rates (PG compared with SEMS insertion, hazard ratio 0.682, p=0.219). Fifteen patients (22.1%) in the stent group received additional intervention, whereas there was no case in the gastrostomy group (p=0.063). The decrease in the serum albumin level after the procedure was lower in the gastrostomy group than in the stent group (-0.20±0.54 g/dL vs. -0.65±0.57 g/dL, p=0.013) CONCLUSIONS: SEMS insertion and PG feeding for relieving dysphagia by lung cancer had a comparable survival outcome. On the other hand, PG was associated with a better nutritional status.
Deglutition Disorders*
;
Esophageal Stenosis
;
Gastrostomy*
;
Hand
;
Humans
;
Lung Neoplasms*
;
Lung*
;
Malnutrition
;
Multivariate Analysis
;
Nutritional Status
;
Quality of Life
;
Retrospective Studies
;
Self Expandable Metallic Stents
;
Serum Albumin
;
Stents*
;
Survival Rate
3.Development of a Novel Subunit Vaccine Targeting Fusobacterium nucleatum FomA Porin Based on In Silico Analysis.
Kwangjoon JEONG ; Puth SAO ; Mi Jin PARK ; Hansol LEE ; Shi Ho KIM ; Joon Haeng RHEE ; Shee Eun LEE
International Journal of Oral Biology 2017;42(2):63-70
Selecting an appropriate antigen with optimal immunogenicity and physicochemical properties is a pivotal factor to develop a protein based subunit vaccine. Despite rapid progress in modern molecular cloning and recombinant protein technology, there remains a huge challenge for purifying and using protein antigens rich in hydrophobic domains, such as membrane associated proteins. To overcome current limitations using hydrophobic proteins as vaccine antigens, we adopted in silico analyses which included bioinformatic prediction and sequence-based protein 3D structure modeling, to develop a novel periodontitis subunit vaccine against the outer membrane protein FomA of Fusobacterium nucleatum. To generate an optimal antigen candidate, we predicted hydrophilicity and B cell epitope parameter by querying to web-based databases, and designed a truncated FomA (tFomA) candidate with better solubility and preserved B cell epitopes. The truncated recombinant protein was engineered to expose epitopes on the surface through simulating amino acid sequence-based 3D folding in aqueous environment. The recombinant tFomA was further expressed and purified, and its immunological properties were evaluated. In the mice intranasal vaccination study, tFomA significantly induced antigen-specific IgG and sIgA responses in both systemic and oral-mucosal compartments, respectively. Our results testify that intelligent in silico designing of antigens provide amenable vaccine epitopes from hard-to-manufacture hydrophobic domain rich microbial antigens.
Animals
;
Cloning, Molecular
;
Computational Biology
;
Computer Simulation*
;
Epitopes
;
Epitopes, B-Lymphocyte
;
Fusobacterium nucleatum*
;
Fusobacterium*
;
Hydrophobic and Hydrophilic Interactions
;
Immunoglobulin A, Secretory
;
Immunoglobulin G
;
Membrane Proteins
;
Mice
;
Periodontitis
;
Solubility
;
Vaccination
4.Flagellin Modulates the Function of Invariant NKT Cells From Patients With Asthma via Dendritic Cells.
Jae Uoong SHIM ; Joon Haeng RHEE ; Ji Ung JEONG ; Young Il KOH
Allergy, Asthma & Immunology Research 2016;8(3):206-215
PURPOSE: Invariant natural killer T (iNKT) cells play a critical role in the pathogenesis of asthma. We previously reported the association between circulating Th2-like iNKT cells and lung function in asthma patients and the suppressive effect of Toll-like receptor 5 ligand flagellin B (FlaB) on asthmatic in a mouse model. Thus, we investigated whether FlaB modulates the function of circulating iNKT cells in asthmatic patients. METHODS: Peripheral blood mononuclear cells (PBMCs) were treated with FlaB, and the secreted and intracellular cytokines of iNKT cells were evaluated by using ELISA and flow cytometry, respectively, following stimulation with alpha-galactosylceramide. Foxp3+ iNKT cells were also measured. To determine the effect of FlaB-treated dendritic cells (DCs) on iNKT cells, we co-cultured CD14+ monocyte-derived DCs and T cells from patients with house dust mite-sensitive asthma and analyzed intracellular cytokines in iNKT cells. RESULTS: A reduction of IL-4 and IL-17 production by iNKT cells in PBMCs after FlaB treatment was alleviated following blocking of IL-10 signaling. A decrease in the frequencies of IL-4+ and IL-17+ iNKT cells by FlaB-treated DCs was reversed after blocking of IL-10 signaling. Simultaneously, an increase in Foxp3+ iNKT cells induced by FlaB treatment disappeared after blocking of IL-10. CONCLUSIONS: FlaB may inhibit Th2- and Th17-like iNKT cells and induce Foxp3+ iNKT cells by DCs via an IL-10-dependent mechanism in asthmatic patients. In patients with a specific asthma phenotype associated with iNKT cells, FlaB may be an effective immunomodulator for iNKT cell-targeted immunotherapy.
Animals
;
Asthma*
;
Cytokines
;
Dendritic Cells*
;
Dust
;
Enzyme-Linked Immunosorbent Assay
;
Flagellin*
;
Flow Cytometry
;
Humans
;
Immunotherapy
;
Interleukin-10
;
Interleukin-17
;
Interleukin-4
;
Lung
;
Mice
;
Natural Killer T-Cells*
;
Phenotype
;
T-Lymphocytes
;
Toll-Like Receptor 5
5.Tetanus toxin fragment C fused to flagellin makes a potent mucosal vaccine.
Shee Eun LEE ; Chung Truong NGUYEN ; Soo Young KIM ; Thinh Nguyen THI ; Joon Haeng RHEE
Clinical and Experimental Vaccine Research 2015;4(1):59-67
PURPOSE: Recombinant subunit vaccines provide safe and targeted protection against microbial infections. However, the protective efficacy of recombinant subunit vaccines tends to be less potent than the whole cell vaccines, especially when they are administered through mucosal routes. We have reported that a bacterial flagellin has strong mucosal adjuvant activity to induce protective immune responses. In this study, we tested whether FlaB could be used as a fusion partner of subunit vaccine for tetanus. MATERIALS AND METHODS: We constructed fusion proteins consisted with tetanus toxin fragment C (TTFC), the nontoxic C-terminal portion of tetanus toxin, and a Toll-like receptor 5 agonist from Vibrio vulnificus (FlaB). Mice were intranasally administered with fusion protein and protective immune responses of the vaccinated mice were analyzed. RESULTS: FlaB-TTFC recombinant protein induced strong tetanus-specific antibody responses in both systemic and mucosal compartments and prolonged the survival of mice after challenge with a supra-lethal dose of tetanus toxin. CONCLUSION: This study establishes FlaB as a successful fusion partner for recombinant subunit tetanus vaccine applicable through mucosal route, and it further endorses our previous observations that FlaB could be a stable adjuvant partner for mucosal vaccines.
Animals
;
Antibody Formation
;
Flagellin*
;
Mice
;
Tetanus
;
Tetanus Toxin*
;
Tetanus Toxoid
;
Toll-Like Receptor 5
;
Vaccines
;
Vaccines, Subunit
;
Vibrio vulnificus
6.Towards Vaccine 3.0: new era opened in vaccine research and industry.
Clinical and Experimental Vaccine Research 2014;3(1):1-4
No abstract available.
7.Destructive Intestinal Translocation of Vibrio vulnificus Determines Successful Oral Infection.
Seol Hee HONG ; Kwangjoon JEONG ; Mi Jin PARK ; Youn Suhk LEE ; Tra My Duong NU ; Soo Young KIM ; Joon Haeng RHEE ; Shee Eun LEE
Journal of Bacteriology and Virology 2013;43(4):262-269
Vibrio vulnificus causes primary septicemia as a result of the consumption of contaminated seafood. The intestinal epithelial layer is the first host barrier encountered by V. vulnificus upon oral intake; however, epithelial translocation (invasion) of V. vulnificus has not been extensively studied. In this study, we investigated in vivo translocation of V. vulnificus using clinical (CMCP6) and environmental isolates (96-11-17M). And we analyzed physiological changes of intestinal epithelium concurrent with bacterial translocation by using polarized HCA-7 transwell culture system. The efficiency of epithelial translocation of 97-11-17M strains was significantly lower than that of pathogenic clinical isolate CMCP6 in a murine ligated ileal loop model. In an oral infection model, the survival rate was reciprocally related with efficacy of in vivo epithelial translocation. These results indicate that efficient translocation of V. vulnificus through intestinal epithelium is highly correlated with successful oral infection. We determined translocation of the bacteria from upper to lower chamber, changes of transepithelial electric resistance (TER) and cytotoxicity of the polarized HCA-7 cells to understand general features of V. vulnificus invasion. Bacterial translocation was accompanied by big decrease of TER (about 90%) and about 50% cytotoxicity of the epithelial cells. Taken together, these results indicate that V. vulnificus actively translocates the epithelium by destruction of epithelium and the efficiency of intestinal invasion by V. vulnificus is critical for successful oral infection. From this result, it is suggested that integrity of intestinal barrier is an important factor for susceptibility to oral infection of V. vulnificus.
Bacteria
;
Bacterial Translocation
;
Electric Impedance
;
Epithelial Cells
;
Epithelium
;
Intestinal Mucosa
;
Seafood
;
Sepsis
;
Survival Rate
;
Vibrio vulnificus*
;
Vibrio*
8.Intranasal immunization with a flagellin-adjuvanted peptide anticancer vaccine prevents tumor development by enhancing specific cytotoxic T lymphocyte response in a mouse model.
Chung Truong NGUYEN ; Seol Hee HONG ; Thuan Trong UNG ; Vivek VERMA ; Soo Young KIM ; Joon Haeng RHEE ; Shee Eun LEE
Clinical and Experimental Vaccine Research 2013;2(2):128-134
PURPOSE: Human papillomavirus (HPV) is a significant cause of cervical cancer-related deaths worldwide. Because HPV is a sexually transmitted mucosal pathogen, enhancement of antigen-specific mucosal immune response likely serves good strategy for vaccination. However, mucosal vaccines generally do not induce strong enough immune responses. Previously we proved that a bacterial flagellin, Vibrio vulnificus FlaB, induce strong antigen-specific immune responses by stimulating the Toll-like receptor 5. In this study, we tested whether FlaB could serve as an effective mucosal adjuvant for a peptide-based HPV preventive cancer vaccine. MATERIALS AND METHODS: Mice were intranasally administered with a mixture of FlaB and E6/E7 protective peptides in 5-day interval for a total of two times. Five-days after the last vaccination, cellular immune responses of the vaccinated mice were analyzed. Tumor growth was also observed after a subcutaneous implantation of TC-1 cells bearing E6/E7 antigens. RESULTS: Intranasal administration of the E6/E7 peptide mixture with FlaB elicited a strong antigen-specific cytotoxic T lymphocyte activity and antigen-specific interferon-gamma production from splenocytes and cervical lymph node cells. Furthermore, FlaB, as a mucosal adjuvant, conferred an excellent protection against TC-1 tumor challenge with high survival rates in E6/E7 immunized animals. CONCLUSION: These results indicate that FlaB can be a promising mucosal adjuvant for nasal HPV vaccine development.
Administration, Intranasal
;
Animals
;
Flagellin
;
Humans
;
Immunity, Cellular
;
Immunity, Mucosal
;
Immunization
;
Interferon-gamma
;
Lymph Nodes
;
Lymphocytes
;
Mice
;
Peptides
;
Survival Rate
;
Toll-Like Receptor 5
;
Ursidae
;
Vaccination
;
Vaccines
;
Vibrio vulnificus
9.TLR4, 5, and 9 Agonists Inhibit Murine Airway Invariant Natural Killer T Cells in an IL-12-Dependent Manner.
Jae Uoong SHIM ; Joon Haeng RHEE ; Young Il KOH
Allergy, Asthma & Immunology Research 2012;4(5):295-304
PURPOSE: Invariant natural killer T (iNKT) cells may play an important role in the pathogenesis of asthma in mice and humans. Thus, an agent that modulates the function of iNKT cells may have therapeutic potential to control asthma. We hypothesized that lipopolysaccharide (LPS)-, flagellin-, or CpG-induced changes in the cytokine milieu may modify and even inhibit the function of airway iNKT cells in asthma. METHODS: Because increased alpha-galactosylceramide (GalCer)-induced airway hyperreactivity (AHR) reflects the presence of airway iNKT cells, alpha-GalCer-induced AHR, as well as inflammatory cells and cytokines in bronchoalveolar lavage (BAL) fluid, were determined 24 hours after in vivo treatment with LPS, flagellin, or CpG in naive BALB/c mice. Intracellular IL-4 and IFN-gamma were measured in spleen iNKT cells after in vitro treatment with LPS, flagellin, or CpG. A role for IL-12 following the treatments was determined. RESULTS: Intranasal administration of LPS, flagellin, or CpG reduced development of alpha-GalCer-induced AHR, eosinophilic airway inflammation, and Th1 and Th2 cytokine responses in BAL fluid, while producing IL-12 in BAL fluid. Intraperitoneal administration of IL-12 mAb blocked the suppressive effect of LPS, flagellin, or CpG. In vitro treatment with LPS, flagellin, or CpG reduced production of IL-4 and IFN-gamma from alpha-GalCer-stimulated spleen iNKT cells; these effects were ameliorated by addition of anti-IL-12 mAb. CONCLUSIONS: TLR4, 5, and 9 agonists may suppress the function of airway and spleen iNKT cells via IL-12-dependent mechanisms. Anergy of iNKT cells by IL-12 might play a role in suppression by these TLR agonists.
Administration, Intranasal
;
Animals
;
Asthma
;
Bronchoalveolar Lavage
;
Cytokines
;
Eosinophils
;
Flagellin
;
Galactosylceramides
;
Humans
;
Inflammation
;
Interleukin-12
;
Interleukin-4
;
Mice
;
Natural Killer T-Cells
;
Spleen
10.Toll-Like Receptor Ligands as Cancer Immunotherapeutics.
Shee Eun LEE ; Joon Haeng RHEE
Journal of Bacteriology and Virology 2012;42(3):255-262
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) expressed in a wide spectrum of cell types that recognize distinctive ligands and subsequently activate adaptive immune responses. TLR ligands are considered a promising target for development of immunomodulatory agents. Extensive clinical investigations are currently underway to develop TLR ligands-based non-specific immunostimulants and vaccine adjuvants. It has been well accepted that cancer cells develop a strategy to avoid host immune responses by producing inhibitory molecules. In addition, tumor-associated antigens are often not strong enough to induce effective anti-cancer immune responses. In this context, immunostimulants or adjuvants are critically required for more effective cancer immunotherapies. Here, we discuss recent progresses in the field of cancer immunotherapy under special emphasis on the TLR ligands as a component of immunostimulatory agents.
Adjuvants, Immunologic
;
Immunotherapy
;
Ligands
;
Receptors, Pattern Recognition
;
Toll-Like Receptors

Result Analysis
Print
Save
E-mail