1.Various macromolecules in in vitro growth medium influence growth, maturation, and parthenogenetic development of pig oocytes derived from small antral follicles
Hanna LEE ; Yongjin LEE ; Joohyeong LEE ; Geun Shik LEE ; Seung Tae LEE ; Eunsong LEE
Korean Journal of Veterinary Research 2019;59(2):81-88
This study was performed to examine the effects of various macromolecules in in vitro growth (IVG) media on the growth, maturation, and parthenogenesis (PA) of pig oocytes derived from small antral follicles (SAF). Immature oocytes were cultured for two days in IVG medium supplemented with 10% (v/v) fetal bovine serum (FBS), 10% (v/v) pig follicular fluid (PFF), 0.4% (w/v) bovine serum albumin (BSA), or 0.1% (w/v) polyvinyl alcohol (PVA) and then maintained for 44 h for maturation. After IVG, the mean diameters of the SAF treated with FBS, PVA, and no IVG-MAF (113.0–114.8 µm) were significantly larger than that of no IVG-SAF (111.8 µm). The proportion of metaphase II oocytes was higher in PFF (73.6%) than in BSA (43.5%) and PVA (53.7%) but similar to that in the FBS treatment (61.5%). FBS and PFF increased cumulus expansion significantly compared to PVA and BSA while the intraoocyte glutathione content was not influenced by the macromolecules. Blastocyst formation of PA oocytes treated with FBS (51.8%), PFF (50.4%), and PVA (45.2%) was significantly higher than that of the BSA-treated oocytes (20.6%). These results show that the PFF and FBS treatments during IVG improved the growth, maturation, and embryonic development of SAF.
2.Various macromolecules in in vitro growth medium influence growth, maturation, and parthenogenetic development of pig oocytes derived from small antral follicles
Hanna LEE ; Yongjin LEE ; Joohyeong LEE ; Geun Shik LEE ; Seung Tae LEE ; Eunsong LEE
Korean Journal of Veterinary Research 2019;59(2):81-88
This study was performed to examine the effects of various macromolecules in in vitro growth (IVG) media on the growth, maturation, and parthenogenesis (PA) of pig oocytes derived from small antral follicles (SAF). Immature oocytes were cultured for two days in IVG medium supplemented with 10% (v/v) fetal bovine serum (FBS), 10% (v/v) pig follicular fluid (PFF), 0.4% (w/v) bovine serum albumin (BSA), or 0.1% (w/v) polyvinyl alcohol (PVA) and then maintained for 44 h for maturation. After IVG, the mean diameters of the SAF treated with FBS, PVA, and no IVG-MAF (113.0–114.8 µm) were significantly larger than that of no IVG-SAF (111.8 µm). The proportion of metaphase II oocytes was higher in PFF (73.6%) than in BSA (43.5%) and PVA (53.7%) but similar to that in the FBS treatment (61.5%). FBS and PFF increased cumulus expansion significantly compared to PVA and BSA while the intraoocyte glutathione content was not influenced by the macromolecules. Blastocyst formation of PA oocytes treated with FBS (51.8%), PFF (50.4%), and PVA (45.2%) was significantly higher than that of the BSA-treated oocytes (20.6%). These results show that the PFF and FBS treatments during IVG improved the growth, maturation, and embryonic development of SAF.
Blastocyst
;
Embryonic Development
;
Female
;
Follicular Fluid
;
Glutathione
;
In Vitro Techniques
;
Metaphase
;
Oocytes
;
Parthenogenesis
;
Polyvinyl Alcohol
;
Pregnancy
;
Serum Albumin, Bovine
3.In vitro maturation using αMEM with reduced NaCl enhances maturation and developmental competence of pig oocytes after somatic cell nuclear transfer
Yongjin LEE ; Joohyeong LEE ; Sang-Hwan HYUN ; Geun-Shik LEE ; Eunsong LEE
Journal of Veterinary Science 2022;23(2):e31-
Background:
Compared to medium containing 108 mM sodium chloride (NaCl), in vitromaturation (IVM) using a simple medium with reduced (61.6 mM) NaCl increases the cytoplasmic maturation and embryonic development of pig oocytes.
Objectives:
This study determines the effect of a complex medium containing reduced NaCl on the IVM and embryonic development of pig oocytes.
Methods:
Pig oocytes were matured in Minimum Essential Medium Eagle-alpha modification (αMEM) supplemented with 61.6 (61αMEM) or 108 (108αMEM) mM NaCl, and containing polyvinyl alcohol (PVA) (αMEMP) or pig follicular fluid (PFF) (αMEMF). Medium-199 (M199) served as the control for conventional IVM. Cumulus cell expansion, nuclear maturation, intra-oocyte glutathione (GSH) contents, size of perivitelline space (PVS), and embryonic development after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT) were evaluated after IVM.
Results:
Regardless of PVA or PFF supplementation, oocytes matured in 61αMEM showed increased intra-oocyte GSH contents and width of PVS (p < 0.05), as well as increased blastocyst formation (p < 0.05) after PA and SCNT, as compared to oocytes matured in 108αMEMP and M199. Under conditions of PFF-enriched αMEM, SCNT oocytes matured in 61αMEMF showed higher blastocyst formation (p < 0.05), compared to maturation in 108αMEMF and M199, whereas PA cultured oocytes showed no significant difference.
Conclusions
IVM in αMEM supplemented with reduced NaCl (61.6 mM) enhances the embryonic developmental competence subsequent to PA and SCNT, which attributes toward improved oocyte maturation.
4.Oocyte maturation under a biophoton generator improves preimplantation development of pig embryos derived by parthenogenesis and somatic cell nuclear transfer.
Joohyeong LEE ; Hyeji SHIN ; Wonyou LEE ; Seung Tae LEE ; Geun Shik LEE ; Sang Hwan HYUN ; Eunsong LEE
Korean Journal of Veterinary Research 2017;57(2):89-95
This study was conducted to determine the effects of biophoton treatment during in vitro maturation (IVM) and/or in vitro culture (IVC) on oocyte maturation and embryonic development in pigs. An apparatus capable of generating homogeneous biophoton energy emissions was placed in an incubator. Initially, immature pig oocytes were matured in the biophoton-equipped incubator in medium 199 supplemented with cysteine, epidermal growth factor, insulin, and gonadotrophic hormones for 22 h, after which they were matured in hormone-free medium for an additional 22 hr. Next, IVM oocytes were induced for parthenogenesis (PA) or provided as cytoplasts for somatic cell nuclear transfer (SCNT). Treatment of oocytes with biophoton energy during IVM did not improve cumulus cell expansion, nuclear maturation, intraoocyte glutathione content, or mitochondrial distribution of oocytes. However, biophoton-treated oocytes showed higher (p < 0.05) blastocyst formation after PA than that in untreated oocytes (50.7% vs. 42.7%). In an additional experiment, SCNT embryos produced from biophoton-treated oocytes showed a greater (p < 0.05) number of cells in blastocysts (52.6 vs. 43.9) than that in untreated oocytes. Taken together, our results demonstrate that biophoton treatment during IVM improves developmental competence of PA- and SCNT-derived embryos.
Blastocyst
;
Cumulus Cells
;
Cysteine
;
Embryonic Development
;
Embryonic Structures*
;
Epidermal Growth Factor
;
Female
;
Glutathione
;
Gonadotrophs
;
In Vitro Techniques
;
Incubators
;
Insulin
;
Mental Competency
;
Oocytes*
;
Parthenogenesis*
;
Pregnancy
;
Swine
5.Rapamycin treatment during in vitro maturation of oocytes improves embryonic development after parthenogenesis and somatic cell nuclear transfer in pigs.
Joohyeong LEE ; Jong Im PARK ; Jung Im YUN ; Yongjin LEE ; Hwanyul YONG ; Seung Tae LEE ; Choon Keun PARK ; Sang Hwan HYUN ; Geun Shik LEE ; Eunsong LEE
Journal of Veterinary Science 2015;16(3):373-380
This study was conducted to investigate the effects of rapamycin treatment during in vitro maturation (IVM) on oocyte maturation and embryonic development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) in pigs. Morphologically good (MGCOCs) and poor oocytes (MPCOCs) were untreated or treated with 1 nM rapamycin during 0-22 h, 22-42 h, or 0-42 h of IVM. Rapamycin had no significant effects on nuclear maturation and blastocyst formation after PA of MGCOCs. Blastocyst formation after PA was significantly increased by rapamycin treatment during 22-42 h and 0-42 h (46.6% and 46.5%, respectively) relative to the control (33.3%) and 0-22 h groups (38.6%) in MPCOCs. In SCNT, blastocyst formation tended to increase in MPCOCs treated with rapamycin during 0-42 h of IVM relative to untreated oocytes (20.3% vs. 14.3%, 0.05 < p < 0.1), while no improvement was observed in MGCOCs. Gene expression analysis revealed that transcript abundance of Beclin 1 and microtubule-associated protein 1 light chain 3 mRNAs was significantly increased in MPCOCs by rapamycin relative to the control. Our results demonstrated that autophagy induction by rapamycin during IVM improved developmental competence of oocytes derived from MPCOCs.
Animals
;
Embryonic Development/*drug effects
;
Female
;
In Vitro Oocyte Maturation Techniques/veterinary
;
Nuclear Transfer Techniques/*veterinary
;
Oocytes/growth & development
;
*Parthenogenesis
;
Sirolimus/*pharmacology
;
Sus scrofa/*growth & development/metabolism
6.Developmental competence of chimeric porcine embryos through the aggregation of parthenogenetic embryos and somatic cell nuclear transfer embryos
Joohyeong LEE ; Lian CAI ; Mirae KIM ; Hyerin CHOI ; Dongjin OH ; Ali JAWAD ; Eunsong LEE ; Sang-Hwan HYUN
Korean Journal of Veterinary Research 2023;63(1):e3-
The efficiency of somatic cell nuclear transfer (NT) in pigs is low and requires enhancement. We identified the most efficient method for zona pellucida (ZP) removal and blastomere aggregation in pigs and investigated whether the aggregation of NT and parthenogenetic activation (PA) of blastomeres could reduce embryonic apoptosis and improve the quality of NT-derived embryos by investigating. Embryonic developmental competence after ZP removal using acid Tyrode's solution or protease (pronase E). The embryonic developmental potential of NT-derived blastomeres was also investigated using well-of-the-well or phytohemagglutinin-L. We analyzed apoptosis in aggregate-derived blastocysts. The aggregation rate of protease-treated embryos was lower than that of Tyrode’s solution-treated embryos (69.2% vs. 88.3%). No significant difference was observed between phytohemagglutinin-L and well-of-the-well (35.7%–38.5%). However, 2P1N showed a higher number of blastocysts compared to 3N (73.8% vs. 24.3%) and an increased blastocyst diameter compared to the control and 1P2N (274 μm vs. 230–234 μm). In blastomeres aggregated using phytohemagglutinin-L, the apoptotic cell ratio was significantly higher in 1P2N and 3N than in 3P (5.91%–6.46% vs. 2.94%, respectively). Our results indicate that aggregation of one NT embryo with two PA embryos improved the rate of blastocysts with increased blastocyst diameter.
7.Antioxidant effect of ergothioneine on in vitro maturation of porcine oocytes
Ji-Young JEONG ; Lian CAI ; Mirae KIM ; Hyerin CHOI ; Dongjin OH ; Ali JAWAD ; Sohee KIM ; Haomiao ZHENG ; Eunsong LEE ; Joohyeong LEE ; Sang-Hwan HYUN
Journal of Veterinary Science 2023;24(2):e24-
Background:
Ergothioneine (EGT) is a natural amino acid derivative in various animal organs and is a bioactive compound recognized as a food and medicine.
Objectives:
This study examined the effects of EGT supplementation during the in vitro maturation (IVM) period on porcine oocyte maturation and subsequent embryonic development competence after in vitro fertilization (IVF).
Methods:
Each EGT concentration (0, 10, 50, and 100 µM) was supplemented in the maturation medium during IVM. After IVM, nuclear maturation, intracellular glutathione (GSH), and reactive oxygen species (ROS) levels of oocytes were investigated. In addition, the genes related to cumulus function and antioxidant pathways in oocytes or cumulus cells were investigated. Finally, this study examined whether EGT could affect embryonic development after IVF.
Results:
After IVM, the EGT supplementation group showed significantly higher intracellular GSH levels and significantly lower intracellular ROS levels than the control group. Moreover, the expression levels of hyaluronan synthase 2 and Connexin 43 were significantly higher in the 10 µM EGT group than in the control group. The expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and NAD(P)H quinone dehydrogenase 1 (NQO1) were significantly higher in the oocytes of the 10 µM EGT group than in the control group. In the assessment of subsequent embryonic development after IVF, the 10 µM EGT treatment group improved the cleavage and blastocyst rate significantly than the control group.
Conclusions
Supplementation of EGT improved oocyte maturation and embryonic development by reducing oxidative stress in IVM oocytes.