1.Vitamin D Attenuates Pain and Cartilage Destruction in OA Animals via Enhancing Autophagic Flux and Attenuating Inflammatory Cell Death
JooYeon JHUN ; Jin Seok WOO ; Ji Ye KWON ; Hyun Sik NA ; Keun-Hyung CHO ; Seon Ae KIM ; Seok Jung KIM ; Su-Jin MOON ; Sung-Hwan PARK ; Mi-La CHO
Immune Network 2022;22(4):e34-
Osteoarthritis (OA) is the most common form of arthritis associated with ageing. Vitamin D has diverse biological effect on bone and cartilage, and observational studies have suggested it potential benefit in OA progression and inflammation process. However, the effect of vitamin D on OA is still contradictory. Here, we investigated the therapeutic potential of vitamin D in OA. Six-week-old male Wistar rats were injected with monosodium iodoacetate (MIA) to induce OA. Pain severity, cartilage destruction, and inflammation were measured in MIA-induced OA rats. Autophagy activity and mitochondrial function were also measured. Vitamin-D (1,25(OH) 2 D3) and celecoxib were used to treat MIAinduced OA rats and OA chondrocytes. Oral supplementation of vitamin D resulted in significant attenuations in OA pain, inflammation, and cartilage destruction. Interestingly, the expressions of MMP-13, IL-1β, and MCP-1 in synovial tissues were remarkably attenuated by vitamin D treatment, suggesting its potential to attenuate synovitis in OA.Vitamin D treatment in OA chondrocytes resulted in autophagy induction in human OA chondrocytes and increased expression of TFEB, but not LC3B, caspase-1 and -3, in inflamed synovium. Vitamin D and celecoxib showed a synergistic effect on antinociceptive and chondroprotective properties in vivo. Vitamin D showed the chondroprotective and antinociceptive property in OA rats. Autophagy induction by vitamin D treatment may be a promising treatment strategy in OA patients especially presenting vitamin D deficiency.Autophagy promoting strategy may attenuate OA progression through protecting cells from damage and inflammatory cell death.
2.Inhibition of RIPK3 Pathway Attenuates Intestinal Inflammation and Cell Death of Inflammatory Bowel Disease and Suppresses Necroptosis in Peripheral Mononuclear Cells of Ulcerative Colitis Patients
Seung Hoon LEE ; Ji ye KWON ; Jeonghyeon MOON ; JeongWon CHOI ; Jooyeon JHUN ; KyungAh JUNG ; Keun-Hyung CHO ; Om DARLAMI ; Han Hee LEE ; Eun Sun JUNG ; Dong Yun SHIN ; Bo-In LEE ; Mi-La CHO
Immune Network 2020;20(2):e16-
Receptor-interacting serine/threonine-protein kinase (RIPK) 3 is a member of the TNF receptor-I signaling complex and mediates necroptosis, an inflammatory cell death. Ulcerative colitis (UC) is an excessive inflammatory disease caused by uncontrolled T cell activation. The current study is aimed to determine whether RIPK3 inhibitor attenuates UC development inhibiting inflammation and necroptosis using experimental colitis mice model. Dextran sulfate sodium-induced colitis mice were administered RIPK3 inhibitor (3 mg/ml) 3 times and their tissues were analyzed by immunohistochemistry. RIPK3, mixed lineage kinase domain-like (MLKL), phosphorylated MLKL, IL-17, and CD4 in colitis patient colon tissues were detected using confocal microscopy. Protein levels were measured using immunohistochemistry and ELISA. The differentiation of Th17 cells was evaluated using flow cytometry. The expression of proinflammatory cytokines and necroptosis in peripheral blood mononuclear cells from UC patients was decreased markedly by RIPK3 inhibitor treatment. We also observed that the injection of RIPK3 inhibitor improves colitis severity and protects intestinal destruction. RIPK3 inhibitor reduced necroptosis factors and proinflammatory cytokines in the colon and consequently protected colon devastation. The expression of inflammatory mediators in experimental colitis mice splenocytes was decreased significantly by RIPK3 inhibitor treatment. These results suggest that RIPK3 inhibitor ameliorates severity of experimental colitis and reduces inflammation through the inhibition of inflammatory response and necroptosis and support RIPK3-targeting substances for treatment of UC.
3.GRIM-19 Ameliorates Multiple Sclerosis in a Mouse Model of Experimental Autoimmune Encephalomyelitis with Reciprocal Regulation of IFNγ/Th1 and IL-17A/Th17 Cells
Jeonghyeon MOON ; Seung Hoon LEE ; Seon-yeong LEE ; Jaeyoon RYU ; Jooyeon JHUN ; JeongWon CHOI ; Gyoung Nyun KIM ; Sangho ROH ; Sung-Hwan PARK ; Mi-La CHO
Immune Network 2020;20(5):e40-
The protein encoded by the Gene Associated with Retinoid-Interferon-Induced Mortality-19 (GRIM-19) is located in the mitochondrial inner membrane and is homologous to the NADH dehydrogenase 1-alpha subcomplex subunit 13 of the electron transport chain.Multiple sclerosis (MS) is a demyelinating disease that damages the brain and spinal cord.Although both the cause and mechanism of MS progression remain unclear, it is accepted that an immune disorder is involved. We explored whether GRIM-19 ameliorated MS by increasing the levels of inflammatory cytokines and immune cells; we used a mouse model of experimental autoimmune encephalomyelitis (EAE) to this end. Six-to-eight-week-old male C57BL/6, IFNγ-knockout (KO), and GRIM-19 transgenic mice were used; EAE was induced in all strains. A GRIM-19 overexpression vector (GRIM19 OVN) was electrophoretically injected intravenously. The levels of Th1 and Th17 cells were measured via flow cytometry, immunofluorescence, and immunohistochemical analysis. IL-17A and IFNγ expression levels were assessed via ELISA and quantitative PCR. IL-17A expression decreased and IFNγ expression increased in EAE mice that received injections of the GRIM19 OVN. GRIM-19 transgenic mice expressed more IFNγ than did wild-type mice; this inhibited EAE development. However, the effect of GRIM-19 overexpression on the EAE of IFNγ-KO mice did not differ from that of the empty vector. GRIM-19 expression was therapeutic for EAE mice, elevating the IFNγ level. GRIM-19 regulated the Th17/Treg cell balance.
4.Oxidized LDL Accelerates CartilageDestruction and Inflammatory Chondrocyte Death in Osteoarthritis by Disrupting the TFEB-Regulated Autophagy-Lysosome Pathway
Jeong Su LEE ; Yun Hwan KIM ; JooYeon JHUN ; Hyun Sik NA ; In Gyu UM ; Jeong Won CHOI ; Jin Seok WOO ; Seung Hyo KIM ; Asode Ananthram SHETTY ; Seok Jung KIM ; Mi-La CHO
Immune Network 2024;24(3):e15-
Osteoarthritis (OA) involves cartilage degeneration, thereby causing inflammation and pain. Cardiovascular diseases, such as dyslipidemia, are risk factors for OA; however, the mechanism is unclear. We investigated the effect of dyslipidemia on the development of OA. Treatment of cartilage cells with low-density lipoprotein (LDL) enhanced abnormal autophagy but suppressed normal autophagy and reduced the activity of transcription factor EB (TFEB), which is important for the function of lysosomes. Treatment of LDL-exposed chondrocytes with rapamycin, which activates TFEB, restored normal autophagy. Also, LDL enhanced the inflammatory death of chondrocytes, an effect reversed by rapamycin. In an animal model of hyperlipidemia-associated OA, dyslipidemia accelerated the development of OA, an effect reversed by treatment with a statin, an anti-dyslipidemia drug, or rapamycin, which activates TFEB. Dyslipidemia reduced the autophagic flux and induced necroptosis in the cartilage tissue of patients with OA. The levels of triglycerides, LDL, and total cholesterol were increased in patients with OA compared to those without OA. The C-reactive protein level of patients with dyslipidemia was higher than that of those without dyslipidemia after total knee replacement arthroplasty. In conclusion, oxidized LDL, an important risk factor of dyslipidemia, inhibited the activity of TFEB and reduced the autophagic flux, thereby inducing necroptosis in chondrocytes.