1.Novel vertebral computed tomography indices in normal and spinal disorder dogs
Jongsu LIM ; Youngmin YOON ; Taesung HWANG ; Hee Chun LEE
Journal of Veterinary Science 2018;19(2):296-300
This study was carried out to derive and evaluate reference computed tomography (CT)-based indices for normal canine spine. CT and magnetic resonance images were acquired from 12 clinically normal Beagle dogs (normal group) and 50 dogs with 56 spinal disorders (patient group). Image acquisition regions were cervical spine (C2–T1), thoracic spine (T1–T13), and lumbar spine (L1–L7). Measured indices were: the ratios of width to height of the spinal cord including the dura matter (CR) and of the vertebral foramen (FR), and the ratio of the cross-sectional area of the spinal cord to that of the vertebral foramen (CFAR). Reliability analysis was performed to evaluate intermodality agreement. Student's t-tests and receiver operating characteristic curves were used to discriminate the normal and patient groups on CT. Intermodality agreements of the normal and patient groups were acceptable to excellent. The highest discriminating levels of CR at the vertebral body level and the intervertebral disc space level were 1.25 or more and 1.44 or more, respectively. FR and CFAR had the highest discriminating level at the cervical region. This report presents quantitative information on canine spinal morphometry; the obtained indices may be helpful for CT screening of dogs with spinal disorders.
Animals
;
Dogs
;
Humans
;
Intervertebral Disc
;
Magnetic Resonance Imaging
;
Mass Screening
;
ROC Curve
;
Spinal Cord
;
Spine
2.CycloZ Improves Hyperglycemia and Lipid Metabolism by Modulating Lysine Acetylation in KK-Ay Mice
Jongsu JEON ; Dohyun LEE ; Bobae KIM ; Bo-Yoon PARK ; Chang Joo OH ; Min-Ji KIM ; Jae-Han JEON ; In-Kyu LEE ; Onyu PARK ; Seoyeong BAEK ; Chae Won LIM ; Dongryeol RYU ; Sungsoon FANG ; Johan AUWERX ; Kyong-Tai KIM ; Hoe-Yune JUNG
Diabetes & Metabolism Journal 2023;47(5):653-667
Background:
CycloZ, a combination of cyclo-His-Pro and zinc, has anti-diabetic activity. However, its exact mode of action remains to be elucidated.
Methods:
KK-Ay mice, a type 2 diabetes mellitus (T2DM) model, were administered CycloZ either as a preventive intervention, or as a therapy. Glycemic control was evaluated using the oral glucose tolerance test (OGTT), and glycosylated hemoglobin (HbA1c) levels. Liver and visceral adipose tissues (VATs) were used for histological evaluation, gene expression analysis, and protein expression analysis.
Results:
CycloZ administration improved glycemic control in KK-Ay mice in both prophylactic and therapeutic studies. Lysine acetylation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, liver kinase B1, and nuclear factor-κB p65 was decreased in the liver and VATs in CycloZ-treated mice. In addition, CycloZ treatment improved mitochondrial function, lipid oxidation, and inflammation in the liver and VATs of mice. CycloZ treatment also increased the level of β-nicotinamide adenine dinucleotide (NAD+), which affected the activity of deacetylases, such as sirtuin 1 (Sirt1).
Conclusion
Our findings suggest that the beneficial effects of CycloZ on diabetes and obesity occur through increased NAD+ synthesis, which modulates Sirt1 deacetylase activity in the liver and VATs. Given that the mode of action of an NAD+ booster or Sirt1 deacetylase activator is different from that of traditional T2DM drugs, CycloZ would be considered a novel therapeutic option for the treatment of T2DM.