1.Development of in vitro produced porcine embryos according to serum types as macromolecule.
Jungmin SON ; Don Buddika Oshadi MALAWEERA ; Eunsong LEE ; Sangtae SHIN ; Jongki CHO
Journal of Veterinary Science 2013;14(3):315-321
This study was conducted to establish an in vitro maturation (IVM) system by selection of efficient porcine serum during porcine in vitro production. To investigate the efficient porcine serum (PS), different types of PS [newborn pig serum, prepubertal gilt serum (PGS), estrus sow serum, and pregnancy sow serum] were used to supplement IVM media with or without gonadotrophin (GTH) and development rates of parthenogenetic activation (PA) and in vitro fertilization (IVF) embryos were then compared. The maturation rates of the PGS group was significantly higher when GTH was not added. Additionally, during development of PA embryos without GTH, the PGS group showed significantly higher cleavage and blastocyst formation rates. Moreover, the cleavage rates of IVF embryos were significantly higher in the PGS group, with no significant differences in the blastocyst formation. However, when GTH was supplemented into the IVM media, there were no significant differences among the four groups in the cleavage rates, development rates of the blastocyst, and cell number of the blastocyst after PA and IVF. In conclusion, PGS is an efficient macromolecule in porcine IVM, and GTH supplementation of the IVM media is beneficial when PS is used as macromolecule, regardless of its origin.
Animals
;
Blastocyst/*drug effects
;
Embryo, Mammalian/drug effects/*embryology/physiology/ultrastructure
;
Fertilization in Vitro/veterinary
;
Gonadotropins/administration & dosage/*metabolism
;
In Vitro Oocyte Maturation Techniques/*methods/veterinary
;
Parthenogenesis/*drug effects
;
Sus scrofa/*embryology
2.Identification of abnormal gene expression in bovine transgenic somatic cell nuclear transfer embryos.
Jongki CHO ; Sungkeun KANG ; Byeong Chun LEE
Journal of Veterinary Science 2014;15(2):225-231
This study was conducted to investigate the expression of three genes related to early embryonic development in bovine transgenic cloned embryos. To accomplish this, development of bovine transgenic somatic cell nuclear transfer (SCNT) embryos was compared with non-transgenic embryos. Next, mRNA transcription of three specific genes (DNMT1, Hsp 70.1, and Mash2) related to early embryo development in transgenic SCNT embryos was compared between transgenic and non-transgenic SCNTs, parthenogenetic embryos, and in vitro fertilization (IVF) embryos. Transgenic SCNT embryos showed significantly lower rates of development to the blastocyst stage than non-transgenic ones. To investigate normal gene expression, RNA was extracted from ten blastocysts derived from parthenogenesis, IVF, non-transgenic, and transgenic SCNT embryos and reverse-transcribed to synthesize cDNA. The cDNA was then subjected to PCR amplification and semi-quantified. More DNMT1 mRNA was detected in the transgenic SCNT group than the other three groups. Hsp 70.1 mRNA was detected in the IVF embryos, while lower levels were found in SCNT and parthenogenetic embryos. Mash2 mRNA was present at the highest levels in transgenic SCNT embryos. In conclusion, the higher levels of methylation and lower protein synthesis after heat shock in the transgenic SCNT embryos expected based on our results may cause lower embryonic development.
Animals
;
Animals, Genetically Modified/genetics
;
Basic Helix-Loop-Helix Transcription Factors/*genetics/metabolism
;
Cattle/embryology/*genetics
;
DNA (Cytosine-5-)-Methyltransferase/*genetics/metabolism
;
Embryo, Mammalian/embryology/metabolism
;
Female
;
Fertilization in Vitro
;
*Gene Expression Regulation, Developmental
;
HSP70 Heat-Shock Proteins/*genetics/metabolism
;
Nuclear Transfer Techniques/veterinary
;
Parthenogenesis
;
Pregnancy
;
RNA, Messenger/genetics/metabolism
;
Transcription, Genetic
3.Improved preimplantation development of porcine somatic cell nuclear transfer embryos by caffeine treatment
Ghangyong KIM ; Pantu Kumar ROY ; Xun FANG ; Bahia MS HASSAN ; Jongki CHO
Journal of Veterinary Science 2019;20(3):e31-
This study examined the effects of a caffeine treatment to improve nuclear reprogramming in porcine cloned embryos. Embryonic development and the expression of genes related to pluripotency (POU5F1, SOX2, NANOG, and CDX2) were compared after caffeine supplementation during manipulation at different concentrations (0, 1.25, 2.5, and 5.0 mM) and after varying the delayed activation time (control, 1, 2, and 4 h) after fusion. Caffeine added to media during manipulation produced a higher rate of development to blastocysts in the 1.25 mM group than in the other concentration groups (22.8% vs. 16.1%, 16.2%, and 19.2%; p < 0.05). When caffeine was added during the 4 h delayed activation, the 1.25 mM caffeine concentration produced a significantly higher rate of development than those in the other 4 h-activation-delayed caffeine concentration groups (22.4% vs. 9.4%, 14.0%, and 11.1%; p < 0.05). On the other hand, no significant improvement over that in the control group was observed when caffeine was supplemented during both the manipulation period and delayed activation period (16.0% vs. 15.2%), respectively. The levels of POU5F1, SOX2, and NANOG expression in blastocysts were significantly higher in the delayed activation caffeine group (4 h, 1.25 mM) than in the control group (1 h, 0 mM; p < 0.05). In conclusion, a caffeine treatment at 1.25 mM during delayed activation for 4 h can improve the preimplantation development of porcine somatic cell nuclear transfer embryos by activating nuclear reprogramming.
Blastocyst
;
Caffeine
;
Cellular Reprogramming
;
Clone Cells
;
Embryonic Development
;
Embryonic Structures
;
Female
;
Hand
;
Pregnancy
4.Mineralized deposits in the uterus of a pig without pregnancy loss.
Geon A KIM ; Jun Xue JIN ; Anukul TAWEECHAIPAISANKUL ; Sanghoon LEE ; Byung Il YOON ; Jongki CHO ; Byeong Chun LEE
Journal of Veterinary Science 2017;18(4):563-565
Herein, we describe a case of uterine calcification in the uterus of a pig without pregnancy loss. The recipient underwent cloned embryo transfer and Cesarean section for safe delivery of cloned piglets. During the Cesarean section, 4 white, star-like, (2 × 2 × 2) cm, calcified structures were found within the endometrial cavity. Despite dystrophic calcification around the placenta, healthy cloned piglets were produced successfully. To our knowledge, this is the first reported case of dystrophic calcification occurring within the uterus in a pregnant pig.
Cesarean Section
;
Clone Cells
;
Embryo Transfer
;
Female
;
Miners*
;
Placenta
;
Pregnancy*
;
Swine
;
Uterus*
5.Supplementation of cryoprotective extender with resveratrol decreases apoptosis index and reactive oxygen species levels in post-thaw dog sperm
Seonggyu BANG ; Bereket Molla TANGA ; Ahmad Yar QAMAR ; Xun FANG ; Gyeonghwan SEONG ; Abdelbagi Hamad Talha NABEEL ; Iljeoung YU ; Jongki CHO
Korean Journal of Veterinary Research 2021;61(4):e29-
Resveratrol (RSV, 3,5,4′-trihydroxytrans-stilbene) protects sperm from cryo-induced damage in various animal and human species. In this study, we aimed to assess the effect of dog sperm cryoprotective extender containing RSV on the quality of post-thaw dog sperm. Sperm were collected from 4 Beagles and supplemented with different concentrations of RSV (0, 100, 200, and 400 µM). After thawing, apoptosis index, and reactive oxygen species (ROS) levels were assessed to determine post-thaw sperm quality. Dog sperm cryopreserved with 400 µM RSV showed significant improvement in post-thaw sperm quality with lower apoptosis index and ROS levels (p < 0.05). Our results showed that the supplementation of dog sperm cryoprotective extender with RSV at a concentration of 400 µM improved the post-thaw dog sperm quality in the term of sperm ROS production and apoptosis. In addition, we emphasize the necessity of testing the ROS levels and apoptosis index using flow cytometry to determine the quality of post-thaw semen.
6.Follicular fluid-derived extracellular vesicles improve in vitro maturation and embryonic development of porcine oocytes
Heejae KANG ; Seonggyu BANG ; Heyyoung KIM ; Ayeong HAN ; Shuntaro MIURA ; Hye Sun PARK ; Islam M. SAADELDIN ; Sanghoon LEE ; Jongki CHO
Korean Journal of Veterinary Research 2023;63(4):e40-
To optimize the most efficient method for porcine in vitro maturation (IVM), we compared the effects of supplementing extracellular vesicles (EVs) derived from porcine follicular fluid (pFF). The cumulus oocyte complexes were grouped into 4 groups with different supplementations as following: pFF (G1), pFF-depleted EVs (G2), EVs (G3) and control (G4) groups. After IVM with different supplementations, maturation rates and the developmental competences of porcine oocytes and blastocyst development were investigated. Additionally, glutathione (GSH) and reactive oxygen species (ROS) levels were measured in mature oocytes. The EVs were isolated and characterized with cryo-TEM and nanoparticle tracking analysis. The pFF significantly affected the maturation rate, whereas the presence of EVs did not show notable difference in the maturation rates. Although there were numerical increases in the measured parameters in EV and pFF-depleted EVs groups, no significant differences were observed between them. The EV group showed similar oocyte maturation rate for both positive and negative control groups. The GSH was not different among the groups, but ROS levels were significantly lower in pFF-supplemented group when compared with other groups with the highest level in the control group. G2 group wasn’t significantly different G1 and G3 group. G3 group wasn’t significantly different from G2 and G4 group. This suggests that EVs in IVM medium which probably effected partially to protect against oxidative stress and potentially enhance the quality of oocytes. This study indicates that the EVs in pFF play a significant role in improving the efficiency of oocyte maturation in porcine.
7.Current strategies using 3D organoids to Theriogenologyestablish in vitro maternal-embryonic interaction
Islam Mohamed SAADELDIN ; Seif EHAB ; Ahmed Elsayed NORELDIN ; Ayman Abdel-Aziz SWELUM ; Seonggyu BANG ; Hyejin KIM ; Ki Young YOON ; Sanghoon LEE ; Jongki CHO
Journal of Veterinary Science 2024;25(3):e40-
and Relevance: This review provides insights into the future direction of modeling maternal-embryonic interaction research and its combination with other powerful technologies to interfere with this dialogue either by promoting or hindering it for improving fertility or methods for contraception, respectively. The merging of organoid systems with microfluidics facilitates the creation of sophisticated and functional organoid models, enhancing insights into organ development, disease mechanisms, and personalized medical investigations.