1.Exploring upregulated genes during osteogenic differentiation of hMSCs.
Sekyung AHN ; Jaesuk RIM ; Jongjin KWON ; Euiseok LEE ; Hyonseok JANG
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2008;34(1):11-18
Human bone marrow mesenchymal stem cells are thought to be multipotent cells, which are present in adult marrow, that can replicate as undifferentiated cells and that have the potential to differentiate to lineages of mesenchymal tissues, including bone, cartilage, fat, tenden, muscle, and marrow stroma. Cells that have the characteristics of human mesenchymal stem cells could be isolated from marrow aspirates of human and animals. This study was designed to identify and characterize genes specifically expressed by osteogenic supplements-treated cells by suppression subtractive hybridization(SSH) method. The results were as follows: 1. 2 genes were upregulated genes in osteogenic diffeentiation of hMSCs, which is further proved by Northern blot analysis. 2. IGFBP-2 has been identified playing an important role in bone formation. 3. HF1 was also upregulated during osteogenic differentiation, but its role in bone formation is not clear yet.
Adult
;
Animals
;
Blotting, Northern
;
Bone Marrow
;
Cartilage
;
Durapatite
;
Humans
;
Insulin-Like Growth Factor Binding Protein 2
;
Mesenchymal Stromal Cells
;
Muscles
;
Osteogenesis
3.Osteogenic Gene Expression on Anodizing Titanium Surface
Wonseok KIM ; Young Seok KIM ; Seongbae JEON ; Sangho JUN ; Euisuk LEE ; Hyonseok JANG ; Jongjin KWON ; Jaesuk RIM
Journal of the Korean Association of Maxillofacial Plastic and Reconstructive Surgeons 2012;34(2):91-99
Aggrecans
;
Alkaline Phosphatase
;
Bone Regeneration
;
Cell Culture Techniques
;
Collagen
;
Dental Implants
;
Durapatite
;
Electrons
;
Extracellular Matrix Proteins
;
Gene Expression
;
Integrin-Binding Sialoprotein
;
Mesenchymal Stromal Cells
;
Osteocalcin
;
Real-Time Polymerase Chain Reaction
;
Titanium
4.Feasibility of Deep Learning-Based Analysis of Auscultation for Screening Significant Stenosis of Native Arteriovenous Fistula for Hemodialysis Requiring Angioplasty
Jae Hyon PARK ; Insun PARK ; Kichang HAN ; Jongjin YOON ; Yongsik SIM ; Soo Jin KIM ; Jong Yun WON ; Shina LEE ; Joon Ho KWON ; Sungmo MOON ; Gyoung Min KIM ; Man-deuk KIM
Korean Journal of Radiology 2022;23(10):949-958
Objective:
To investigate the feasibility of using a deep learning-based analysis of auscultation data to predict significant stenosis of arteriovenous fistulas (AVF) in patients undergoing hemodialysis requiring percutaneous transluminal angioplasty (PTA).
Materials and Methods:
Forty patients (24 male and 16 female; median age, 62.5 years) with dysfunctional native AVF were prospectively recruited. Digital sounds from the AVF shunt were recorded using a wireless electronic stethoscope before (pre-PTA) and after PTA (post-PTA), and the audio files were subsequently converted to mel spectrograms, which were used to construct various deep convolutional neural network (DCNN) models (DenseNet201, EfficientNetB5, and ResNet50). The performance of these models for diagnosing ≥ 50% AVF stenosis was assessed and compared. The ground truth for the presence of ≥ 50% AVF stenosis was obtained using digital subtraction angiography. Gradient-weighted class activation mapping (Grad-CAM) was used to produce visual explanations for DCNN model decisions.
Results:
Eighty audio files were obtained from the 40 recruited patients and pooled for the study. Mel spectrograms of “pre-PTA” shunt sounds showed patterns corresponding to abnormal high-pitched bruits with systolic accentuation observed in patients with stenotic AVF. The ResNet50 and EfficientNetB5 models yielded an area under the receiver operating characteristic curve of 0.99 and 0.98, respectively, at optimized epochs for predicting ≥ 50% AVF stenosis. However, GradCAM heatmaps revealed that only ResNet50 highlighted areas relevant to AVF stenosis in the mel spectrogram.
Conclusion
Mel spectrogram-based DCNN models, particularly ResNet50, successfully predicted the presence of significant AVF stenosis requiring PTA in this feasibility study and may potentially be used in AVF surveillance.
5.Prospective Evaluation of Various Ultrasound Parameters for Assessing Renal Allograft Rejection Subtypes: Elasticity and Dispersion as Diagnostic Tools
Yeji KWON ; Jongjin YOON ; Dae Chul JUNG ; Young Taik OH ; Kyunghwa HAN ; Minsun JUNG ; Byung Chul KANG
Yonsei Medical Journal 2025;66(4):249-258
Purpose:
Renal allograft rejection, either acute or chronic, is prevalent among many recipients. This study aimed to identify multiple Doppler ultrasound parameters for predicting renal allograft rejection.
Materials and Methods:
Between November 2021 and April 2022, 61 renal allograft recipients were studied prospectively after excluding two patients with dual transplants and seven with hydronephrosis. The analysis excluded 11 cases (10 due to missing Doppler data or pathology reports and one due to a high interquartile range/median dispersion value), resulting in a final analysis of 50 patients. Clinical characteristics, color Doppler imaging, superb microvascular imaging, and shear-wave imaging parameters were assessed by three experienced genitourinary radiologists. The Banff classification of the biopsy tissue served as the reference standard. Univariable and multivariable logistic regression, contingency matrices, and multiple machine-learning models were employed to estimate the associations.
Results:
Fifty kidney transplant recipients (mean age, 53.26±8.86 years; 29 men) were evaluated. Elasticity (≤14.8 kPa) demonstrated significant associations for predicting the combination of (borderline) T cell-mediated rejection (TCMR) categories (Banff categories 3 and 4) (p=0.006) and yielded equal or higher area under the receiver operating characteristics curve (AUC) values compared to various classifiers. Dispersion (>15.0 m/s/kHz) was the only significant factor for predicting the combination of nonTCMR categories (Banff categories 2, 5, and 6) (p=0.026) and showed equal or higher AUC values than multiple machine learning classifiers.
Conclusion
Elasticity (≤14.8 kPa) showed a significant association with the combination of (borderline) TCMR categories, whereas dispersion (>15.0 m/s/kHz) was significantly associated with the combination of non-TCMR categories in renal allografts.
6.Prospective Evaluation of Various Ultrasound Parameters for Assessing Renal Allograft Rejection Subtypes: Elasticity and Dispersion as Diagnostic Tools
Yeji KWON ; Jongjin YOON ; Dae Chul JUNG ; Young Taik OH ; Kyunghwa HAN ; Minsun JUNG ; Byung Chul KANG
Yonsei Medical Journal 2025;66(4):249-258
Purpose:
Renal allograft rejection, either acute or chronic, is prevalent among many recipients. This study aimed to identify multiple Doppler ultrasound parameters for predicting renal allograft rejection.
Materials and Methods:
Between November 2021 and April 2022, 61 renal allograft recipients were studied prospectively after excluding two patients with dual transplants and seven with hydronephrosis. The analysis excluded 11 cases (10 due to missing Doppler data or pathology reports and one due to a high interquartile range/median dispersion value), resulting in a final analysis of 50 patients. Clinical characteristics, color Doppler imaging, superb microvascular imaging, and shear-wave imaging parameters were assessed by three experienced genitourinary radiologists. The Banff classification of the biopsy tissue served as the reference standard. Univariable and multivariable logistic regression, contingency matrices, and multiple machine-learning models were employed to estimate the associations.
Results:
Fifty kidney transplant recipients (mean age, 53.26±8.86 years; 29 men) were evaluated. Elasticity (≤14.8 kPa) demonstrated significant associations for predicting the combination of (borderline) T cell-mediated rejection (TCMR) categories (Banff categories 3 and 4) (p=0.006) and yielded equal or higher area under the receiver operating characteristics curve (AUC) values compared to various classifiers. Dispersion (>15.0 m/s/kHz) was the only significant factor for predicting the combination of nonTCMR categories (Banff categories 2, 5, and 6) (p=0.026) and showed equal or higher AUC values than multiple machine learning classifiers.
Conclusion
Elasticity (≤14.8 kPa) showed a significant association with the combination of (borderline) TCMR categories, whereas dispersion (>15.0 m/s/kHz) was significantly associated with the combination of non-TCMR categories in renal allografts.
7.Prospective Evaluation of Various Ultrasound Parameters for Assessing Renal Allograft Rejection Subtypes: Elasticity and Dispersion as Diagnostic Tools
Yeji KWON ; Jongjin YOON ; Dae Chul JUNG ; Young Taik OH ; Kyunghwa HAN ; Minsun JUNG ; Byung Chul KANG
Yonsei Medical Journal 2025;66(4):249-258
Purpose:
Renal allograft rejection, either acute or chronic, is prevalent among many recipients. This study aimed to identify multiple Doppler ultrasound parameters for predicting renal allograft rejection.
Materials and Methods:
Between November 2021 and April 2022, 61 renal allograft recipients were studied prospectively after excluding two patients with dual transplants and seven with hydronephrosis. The analysis excluded 11 cases (10 due to missing Doppler data or pathology reports and one due to a high interquartile range/median dispersion value), resulting in a final analysis of 50 patients. Clinical characteristics, color Doppler imaging, superb microvascular imaging, and shear-wave imaging parameters were assessed by three experienced genitourinary radiologists. The Banff classification of the biopsy tissue served as the reference standard. Univariable and multivariable logistic regression, contingency matrices, and multiple machine-learning models were employed to estimate the associations.
Results:
Fifty kidney transplant recipients (mean age, 53.26±8.86 years; 29 men) were evaluated. Elasticity (≤14.8 kPa) demonstrated significant associations for predicting the combination of (borderline) T cell-mediated rejection (TCMR) categories (Banff categories 3 and 4) (p=0.006) and yielded equal or higher area under the receiver operating characteristics curve (AUC) values compared to various classifiers. Dispersion (>15.0 m/s/kHz) was the only significant factor for predicting the combination of nonTCMR categories (Banff categories 2, 5, and 6) (p=0.026) and showed equal or higher AUC values than multiple machine learning classifiers.
Conclusion
Elasticity (≤14.8 kPa) showed a significant association with the combination of (borderline) TCMR categories, whereas dispersion (>15.0 m/s/kHz) was significantly associated with the combination of non-TCMR categories in renal allografts.
8.Prospective Evaluation of Various Ultrasound Parameters for Assessing Renal Allograft Rejection Subtypes: Elasticity and Dispersion as Diagnostic Tools
Yeji KWON ; Jongjin YOON ; Dae Chul JUNG ; Young Taik OH ; Kyunghwa HAN ; Minsun JUNG ; Byung Chul KANG
Yonsei Medical Journal 2025;66(4):249-258
Purpose:
Renal allograft rejection, either acute or chronic, is prevalent among many recipients. This study aimed to identify multiple Doppler ultrasound parameters for predicting renal allograft rejection.
Materials and Methods:
Between November 2021 and April 2022, 61 renal allograft recipients were studied prospectively after excluding two patients with dual transplants and seven with hydronephrosis. The analysis excluded 11 cases (10 due to missing Doppler data or pathology reports and one due to a high interquartile range/median dispersion value), resulting in a final analysis of 50 patients. Clinical characteristics, color Doppler imaging, superb microvascular imaging, and shear-wave imaging parameters were assessed by three experienced genitourinary radiologists. The Banff classification of the biopsy tissue served as the reference standard. Univariable and multivariable logistic regression, contingency matrices, and multiple machine-learning models were employed to estimate the associations.
Results:
Fifty kidney transplant recipients (mean age, 53.26±8.86 years; 29 men) were evaluated. Elasticity (≤14.8 kPa) demonstrated significant associations for predicting the combination of (borderline) T cell-mediated rejection (TCMR) categories (Banff categories 3 and 4) (p=0.006) and yielded equal or higher area under the receiver operating characteristics curve (AUC) values compared to various classifiers. Dispersion (>15.0 m/s/kHz) was the only significant factor for predicting the combination of nonTCMR categories (Banff categories 2, 5, and 6) (p=0.026) and showed equal or higher AUC values than multiple machine learning classifiers.
Conclusion
Elasticity (≤14.8 kPa) showed a significant association with the combination of (borderline) TCMR categories, whereas dispersion (>15.0 m/s/kHz) was significantly associated with the combination of non-TCMR categories in renal allografts.
9.Prospective Evaluation of Various Ultrasound Parameters for Assessing Renal Allograft Rejection Subtypes: Elasticity and Dispersion as Diagnostic Tools
Yeji KWON ; Jongjin YOON ; Dae Chul JUNG ; Young Taik OH ; Kyunghwa HAN ; Minsun JUNG ; Byung Chul KANG
Yonsei Medical Journal 2025;66(4):249-258
Purpose:
Renal allograft rejection, either acute or chronic, is prevalent among many recipients. This study aimed to identify multiple Doppler ultrasound parameters for predicting renal allograft rejection.
Materials and Methods:
Between November 2021 and April 2022, 61 renal allograft recipients were studied prospectively after excluding two patients with dual transplants and seven with hydronephrosis. The analysis excluded 11 cases (10 due to missing Doppler data or pathology reports and one due to a high interquartile range/median dispersion value), resulting in a final analysis of 50 patients. Clinical characteristics, color Doppler imaging, superb microvascular imaging, and shear-wave imaging parameters were assessed by three experienced genitourinary radiologists. The Banff classification of the biopsy tissue served as the reference standard. Univariable and multivariable logistic regression, contingency matrices, and multiple machine-learning models were employed to estimate the associations.
Results:
Fifty kidney transplant recipients (mean age, 53.26±8.86 years; 29 men) were evaluated. Elasticity (≤14.8 kPa) demonstrated significant associations for predicting the combination of (borderline) T cell-mediated rejection (TCMR) categories (Banff categories 3 and 4) (p=0.006) and yielded equal or higher area under the receiver operating characteristics curve (AUC) values compared to various classifiers. Dispersion (>15.0 m/s/kHz) was the only significant factor for predicting the combination of nonTCMR categories (Banff categories 2, 5, and 6) (p=0.026) and showed equal or higher AUC values than multiple machine learning classifiers.
Conclusion
Elasticity (≤14.8 kPa) showed a significant association with the combination of (borderline) TCMR categories, whereas dispersion (>15.0 m/s/kHz) was significantly associated with the combination of non-TCMR categories in renal allografts.