1.Generation of Induced Pluripotent Stem Cells from Lymphoblastoid Cell Lines by Electroporation of Episomal Vectors
Myunghyun KIM ; Junmyeong PARK ; Sujin KIM ; Dong Wook HAN ; Borami SHIN ; Hans Robert SCHÖLER ; Johnny KIM ; Kee-Pyo KIM
International Journal of Stem Cells 2023;16(1):36-43
Background and Objectives:
Lymphoblastoid cell lines (LCLs) deposited from disease-affected individuals could be a valuable donor cell source for generating disease-specific induced pluripotent stem cells (iPSCs). However, generation of iPSCs from the LCLs is still challenging, as yet no effective gene delivery strategy has been developed.
Methods:
and Results: Here, we reveal an effective gene delivery method specifically for LCLs. We found that LCLs appear to be refractory toward retroviral and lentiviral transduction. Consequently, lentiviral and retroviral transduction of OCT4, SOX2, KFL4 and c-MYC into LCLs does not elicit iPSC colony formation. Interestingly, however we found that transfection of oriP/EBNA-1-based episomal vectors by electroporation is an efficient gene delivery system into LCLs, enabling iPSC generation from LCLs. These iPSCs expressed pluripotency makers (OCT4, NANOG, SSEA4, SALL4) and could form embryoid bodies.
Conclusions
Our data show that electroporation is an effective gene delivery method with which LCLs can be efficiently reprogrammed into iPSCs.
2.Anti-cancer Effects of a Novel Quinoline Derivative 83b1 on Human Esophageal Squamous Cell Carcinoma through Down-Regulation of COX-2 mRNA and PGE₂.
Ivan Ho Yuen PUN ; Dessy CHAN ; Sau Hing CHAN ; Po Yee CHUNG ; Yuan Yuan ZHOU ; Simon LAW ; Alfred King Yin LAM ; Chung Hin CHUI ; Albert Sun Chi CHAN ; Kim Hung LAM ; Johnny Cheuk On TANG
Cancer Research and Treatment 2017;49(1):219-229
PURPOSE: 83b1 is a novel quinoline derivative that has been shown to inhibit cancer growth in human esophageal squamous cell carcinoma (ESCC). This study was conducted to comprehensively evaluate the cytotoxic effects of 83b1 on a series of ESCC cell lines and investigate the mechanisms by which 83b1 suppresses cancer growth based on molecular docking analysis. MATERIALS AND METHODS: A series of ESCC and nontumor immortalized cell lines were exposed to 83b1 and cisplatin (CDDP) in a dose-dependent manner, and the cytotoxicity was examined by a MTS assay kit. Prediction of the molecular targets of 83b1 was conducted by molecular docking analysis. Expression of cyclooxygenase 2 (COX-2) mRNA and COX-2–derived prostaglandin E₂ (PGE₂) were measured by quantitative real-time polymerase chain reaction and enzymelinked immuno-sorbent assay, respectively. In vivo anti-tumor effect was determined using a nude mice xenografted model transplanted with an ESCC cell line, KYSE-450. RESULTS: 83b1 showed the significant anti-cancer effects on all ESCC cell lines compared to CDDP; however, 83b1 revealed much lower toxic effects on non-tumor cell lines than CDDP. The predicted molecular target of 83b1 is peroxisome proliferator-activated receptor delta (PPARδ), which is a widely known oncoprotein. Additionally the expression of COX-2 mRNA and COX-2–derived PGE2 were down-regulated by 83b1 in a dose-dependent manner in ESCC cell lines. Furthermore, 83b1 was shown to significantly reduce the tumor size in nude mice xenograft. CONCLUSION: The results of this study suggest that the potential anti-cancer effects of 83b1 on human esophageal cancers occur through the possible oncotarget, PPARδ, and down-regulation of the cancer related genes and molecules.
Animals
;
Carcinoma, Squamous Cell*
;
Cell Line
;
Cisplatin
;
Cyclooxygenase 2
;
Dinoprostone
;
Down-Regulation*
;
Epithelial Cells*
;
Esophageal Neoplasms
;
Heterografts
;
Humans*
;
Mice
;
Mice, Nude
;
Molecular Docking Simulation
;
PPAR delta
;
Quinolines
;
Real-Time Polymerase Chain Reaction
;
RNA, Messenger*