1.The Battle Between Influenza and the Innate Immune Response in the Human Respiratory Tract.
Infection and Chemotherapy 2013;45(1):11-21
Influenza is a viral infection of the respiratory tract. Infection is normally confined to the upper respiratory tract but certain viral strains have evolved the ability to infect the lower respiratory tract, including the alveoli, leading to inflammation and a disease pattern of diffuse alveolar damage. Factors leading to this sequence of events are novel influenza strains, or strains that have viral proteins, in particular the NS1 protein that allow it to escape the innate immune system. There are three main barriers that prevent infection of pneumocytes - mucin, host defence lectins and cells such as macrophages. Viruses have developed strategies such as neuraminidase and glycosylation patterns that allow this evasion. Though there has been much investment in antiviral drugs, it is proposed that more attention should be directed towards developing or utilizing compounds that enhance the ability of the innate immune system to combat viral infection.
Antiviral Agents
;
Glycosylation
;
Humans
;
Immune System
;
Immunity, Innate
;
Inflammation
;
Influenza, Human
;
Investments
;
Lectins
;
Macrophages
;
Mucins
;
Neuraminidase
;
Pneumocytes
;
Respiratory System
;
United Nations
;
Viral Proteins
2.Intraperitoneal versus intranasal administration of lipopolysaccharide in causing sepsis severity in a murine model: a preliminary comparison
Yaqing JIAO ; Cindy S. W. TONG ; Lingyun ZHAO ; Yilin ZHANG ; John M. NICHOLLS ; Timothy H. RAINER
Laboratory Animal Research 2024;40(2):280-286
Community-acquired respiratory infection is the commonest cause of sepsis presenting to emergency departments. Yet current experimental animal models simulate peritoneal sepsis with intraperitoneal (I.P.) injection of lipopolysaccharide (LPS) as the predominant route. We aimed to compare the progression of organ injury between I.P. LPS and intranasal (I.N.) LPS in order to establish a better endotoxemia murine model of respiratory sepsis. Eight weeks old male BALB/c mice received LPS-Escherichia coli doses at 0.15, 1, 10, 20, 40 and 100 mg per kg body weight (e.g. LPS-10 is a dose of 10 mg/kg body weight). Disease severity was monitored by a modified Mouse Clinical Assessment Score for Sepsis (M-CASS; range 0–21). A M-CASS score ≥ 10 or a weight reduction of ≥ 20%, was used as a criterion for euthanasia. The primary outcome was the survival rate (either no death or no need for euthanasia). The progression of disease was specified as M-CASS, body weight, blood glucose, histopathological changes to lung, liver, spleen, kidney, brain and heart tissues. Survival rate in I.P. LPS-20 mice was 0% (2/3 died; 1/3 euthanized with M-CASS > 10) at 24 h. Survival rate in all doses of I.N. LPS was 100% (20/20; 3–4 per group) at 96 h. 24 h mean M-CASS post-I.P. LPS-10 was 6.4/21 significantly higher than I.N. LPS-10 of 1.7/21 (Unpaired t test, P < 0.05). Organ injury was present at 96 h in the I.P. LPS-10 group: lung (3/3; 100%), spleen (3/3; 100%) and liver (1/3; 33%). At 24 h in the I.P. LPS-20 group, kidney injury was observed in the euthanized mouse. At 96 h in the post-I.N. LPS-20 group, only lung injury was observed in 2/3 (67%) mice (Kruskal-Wallis test with Dunn’s, P < 0.01). At 24 h in the post-I.N. LPS-100 group all (4/4) mice had evidence of lung injury. Variable doses of I.N. LPS in mice produced lung injury but did not produce sepsis. Higher doses of I.P. LPS induced multi-organ injury but not respiratory sepsis. Lethal models of respiratory virus, e.g., influenza A, might provide alternative avenues that can be explored in future research.