1.Thyroid Dyshormonogenesis Due to Dual Oxidase Maturation Factor 2 Mutation as Non-Transient Status of Hypothyroidism
Jisu LEE ; Sang-gyeom KIM ; Arum OH ; Heon-Seok HAN
International Journal of Thyroidology 2022;15(1):54-59
Dual oxidase maturation factor 2 (DUOXA2) is necessary for the enzymatic activity of dual oxidase 2 (DUOX2) to generate hydrogen peroxide production during thyroid hormone synthesis. We describe two Korean children, who were initially suspected to have transient congenital hypothyroidism (CH), but later confirmed to have permanent CH caused by DUOXA2 mutation. Treatment with levothyroxine was discontinued after confirming thyroid-stimulating hormone (TSH) level to be below 10 μU/mL and normal thyroid scan at the first or second trial-off therapy. However, after therapy cessation, TSH elevated to more than 10 μU/mL, and goiter developed in case 2. As a result, levothyroxine was resumed. Next-generation sequencing showed compound heterozygous mutations of DUOXA2 at Y138X and Y246X in case 1 and homozygous mutations of DUOXA2 at Y246X in case 2. In this report, a longer follow-up is recommended even after treatment termination in transient CH, and genetic studies might help assess the permanence of hypothyroidism in cases of mildly elevated TSH after trial-off therapy.
2.Ultrasonographic Development and Progression of a Thyroid Nodule in a Girl with TPO-Mutated Dyshormonogenesis during Levothyroxine Supplementation
Jisu LEE ; Arum OH ; Heon-Seok HAN
International Journal of Thyroidology 2023;16(1):128-133
Dyshormonogenesis is caused by genetic defects in thyroid hormone synthesis. The most common form is thyroid peroxidase (TPO) deficiency. Clinically variable degree of hypothyroidism and thyroid gland enlargement depend on the severity of the defect. We report 22-year-old female with congenital hypothyroidism (CH) caused by TPO deficiency. Since goitrous CH was diagnosed at 8-year-old, L-thyroxine has been supplemented. Her goiter size was fluctuated according to the compliance on the medication. After 3.5 years of medication, ultrasonography found solid nodule, which was interpreted as nodular hyperplasia pathologically. The nodule size did not change during recent 10 years except peripheral calcification. Genetic analysis using NGS for CH revealed compound heterozygous variants of c.2757del;p.(Met921Trpfs*53) and c.1580G>T;p.(Trp527Leu) in TPO gene. The first variant inherited from asymptomatic mother is pathogenic frame-shift mutation associated with stop codon, and the second one inherited from her asymptomatic father is predicted as deleterious in bioinformatics software program. From this case, we have observed that nodular change and calcification developed from diffuse enlarged goiter in dyshormonogenetic patient. Early molecular diagnosis of dyshormonogenesis and TSH suppression is important for not developing thyroid nodules in case of childhood euthyroid goiter without thyroid autoantibodies.
3.The correlation between bone mineral density/trabecular bone score and body mass index, height, and weight.
Young Seong KIM ; Jae Joon HAN ; Jisu LEE ; Han Seok CHOI ; Jin Hwan KIM ; Taeyong LEE
Osteoporosis and Sarcopenia 2017;3(2):98-103
OBJECTIVES: This study investigated the correlation between bone mineral density (BMD)/trabecular bone score (TBS) and body mass index (BMI), height and weight in Korean adults. METHODS: We enrolled 2555 female participants in their 20s–80s and 1631 male participants in their 20s–70s. Participants with history of previous vertebral surgeries or current vertebral diseases were excluded. Female and male participants were divided into osteoporosis group (n = 136 and n = 31, respectively), osteopenia group (n = 822 and n = 460, respectively), and normal group (n = 1596 and n = 1140, respectively) based on their BMD T-score. Dual-energy X-ray absorptiometry image analysis and linear regression analysis were conducted on each participant in each group to determine the P-value and the correlation between BMD T-score/TBS T-score and BMI, weight, and height. RESULTS: We found a significant correlation between BMI and TBS in both male and female participants. In the male participants, the correlation coefficient increased progressively from the normal group to the osteoporosis group. In the female group, we observed a significant positive correlation between height and TBS, and in the male group a significant negative correlation between weight and TBS was observed. CONCLUSIONS: BMI and weight are closely correlated to body fat content. BMD was positively correlated to BMI and weight, while TBS was negatively correlated to BMI and weight. Therefore, although BMI causes an increase in BMD, it appears to be negatively affecting bone quality.
Absorptiometry, Photon
;
Adipose Tissue
;
Adult
;
Body Mass Index*
;
Bone Density
;
Bone Diseases, Metabolic
;
Female
;
Humans
;
Korea
;
Linear Models
;
Male
;
Miners*
;
Osteoporosis
4.Anti-inflammatory effects of rutin in lipopolysaccharide-stimulated canine macrophage cells
Hyunsoo JANG ; Su-Cheol HAN ; Jisu LEE ; Ha-Young SHIN ; Jeong Ho HWANG ; Jung-Heun HA
Nutrition Research and Practice 2025;19(1):143-153
BACKGROUND/OBJECTIVES:
Inflammatory responses are key pathological factors in various canine diseases, making the control of inflammatory responses vital for canine health.This study examined the anti-inflammatory effects of rutin on DH82 cells, a type of canine macrophage, against lipopolysaccharide (LPS)-induced inflammatory responses.MATERIALS/METHODS: The inflammatory in vitro experimental model was established by stimulating canine macrophage DH82 cells with LPS. To evaluate the inflammationpreventative effects of rutin, analyses were conducted using enzyme-linked immunosorbent assay, western blot, and real-time quantitative reverse transcription polymerase chain reaction.
RESULTS:
Rutin inhibited the LPS-induced increase in the protein and gene levels of proinflammatory cytokines (interleukin [IL]-1β, IL-6, tumor necrosis factor-α), while antiinflammatory cytokines (IL-10, transforming growth factor-β1) levels remained unchanged.Furthermore, rutin suppressed the LPS-induced activation of phosphorylated extracellular signal-regulated kinase, Jun N-terminal kinase, inhibitor of nuclear factor kappa B, and nuclear factor kappa B (NF-κB) in DH82 cells.
CONCLUSION
Rutin exerts anti-inflammatory effects by inhibiting the mitogen-activated protein kinase-NF-κB signaling pathway and reducing the production of pro-inflammatory cytokines in DH82 cells.
5.Anti-inflammatory effects of rutin in lipopolysaccharide-stimulated canine macrophage cells
Hyunsoo JANG ; Su-Cheol HAN ; Jisu LEE ; Ha-Young SHIN ; Jeong Ho HWANG ; Jung-Heun HA
Nutrition Research and Practice 2025;19(1):143-153
BACKGROUND/OBJECTIVES:
Inflammatory responses are key pathological factors in various canine diseases, making the control of inflammatory responses vital for canine health.This study examined the anti-inflammatory effects of rutin on DH82 cells, a type of canine macrophage, against lipopolysaccharide (LPS)-induced inflammatory responses.MATERIALS/METHODS: The inflammatory in vitro experimental model was established by stimulating canine macrophage DH82 cells with LPS. To evaluate the inflammationpreventative effects of rutin, analyses were conducted using enzyme-linked immunosorbent assay, western blot, and real-time quantitative reverse transcription polymerase chain reaction.
RESULTS:
Rutin inhibited the LPS-induced increase in the protein and gene levels of proinflammatory cytokines (interleukin [IL]-1β, IL-6, tumor necrosis factor-α), while antiinflammatory cytokines (IL-10, transforming growth factor-β1) levels remained unchanged.Furthermore, rutin suppressed the LPS-induced activation of phosphorylated extracellular signal-regulated kinase, Jun N-terminal kinase, inhibitor of nuclear factor kappa B, and nuclear factor kappa B (NF-κB) in DH82 cells.
CONCLUSION
Rutin exerts anti-inflammatory effects by inhibiting the mitogen-activated protein kinase-NF-κB signaling pathway and reducing the production of pro-inflammatory cytokines in DH82 cells.
6.Anti-inflammatory effects of rutin in lipopolysaccharide-stimulated canine macrophage cells
Hyunsoo JANG ; Su-Cheol HAN ; Jisu LEE ; Ha-Young SHIN ; Jeong Ho HWANG ; Jung-Heun HA
Nutrition Research and Practice 2025;19(1):143-153
BACKGROUND/OBJECTIVES:
Inflammatory responses are key pathological factors in various canine diseases, making the control of inflammatory responses vital for canine health.This study examined the anti-inflammatory effects of rutin on DH82 cells, a type of canine macrophage, against lipopolysaccharide (LPS)-induced inflammatory responses.MATERIALS/METHODS: The inflammatory in vitro experimental model was established by stimulating canine macrophage DH82 cells with LPS. To evaluate the inflammationpreventative effects of rutin, analyses were conducted using enzyme-linked immunosorbent assay, western blot, and real-time quantitative reverse transcription polymerase chain reaction.
RESULTS:
Rutin inhibited the LPS-induced increase in the protein and gene levels of proinflammatory cytokines (interleukin [IL]-1β, IL-6, tumor necrosis factor-α), while antiinflammatory cytokines (IL-10, transforming growth factor-β1) levels remained unchanged.Furthermore, rutin suppressed the LPS-induced activation of phosphorylated extracellular signal-regulated kinase, Jun N-terminal kinase, inhibitor of nuclear factor kappa B, and nuclear factor kappa B (NF-κB) in DH82 cells.
CONCLUSION
Rutin exerts anti-inflammatory effects by inhibiting the mitogen-activated protein kinase-NF-κB signaling pathway and reducing the production of pro-inflammatory cytokines in DH82 cells.
7.Anti-inflammatory effects of rutin in lipopolysaccharide-stimulated canine macrophage cells
Hyunsoo JANG ; Su-Cheol HAN ; Jisu LEE ; Ha-Young SHIN ; Jeong Ho HWANG ; Jung-Heun HA
Nutrition Research and Practice 2025;19(1):143-153
BACKGROUND/OBJECTIVES:
Inflammatory responses are key pathological factors in various canine diseases, making the control of inflammatory responses vital for canine health.This study examined the anti-inflammatory effects of rutin on DH82 cells, a type of canine macrophage, against lipopolysaccharide (LPS)-induced inflammatory responses.MATERIALS/METHODS: The inflammatory in vitro experimental model was established by stimulating canine macrophage DH82 cells with LPS. To evaluate the inflammationpreventative effects of rutin, analyses were conducted using enzyme-linked immunosorbent assay, western blot, and real-time quantitative reverse transcription polymerase chain reaction.
RESULTS:
Rutin inhibited the LPS-induced increase in the protein and gene levels of proinflammatory cytokines (interleukin [IL]-1β, IL-6, tumor necrosis factor-α), while antiinflammatory cytokines (IL-10, transforming growth factor-β1) levels remained unchanged.Furthermore, rutin suppressed the LPS-induced activation of phosphorylated extracellular signal-regulated kinase, Jun N-terminal kinase, inhibitor of nuclear factor kappa B, and nuclear factor kappa B (NF-κB) in DH82 cells.
CONCLUSION
Rutin exerts anti-inflammatory effects by inhibiting the mitogen-activated protein kinase-NF-κB signaling pathway and reducing the production of pro-inflammatory cytokines in DH82 cells.
8.Anti-inflammatory effects of rutin in lipopolysaccharide-stimulated canine macrophage cells
Hyunsoo JANG ; Su-Cheol HAN ; Jisu LEE ; Ha-Young SHIN ; Jeong Ho HWANG ; Jung-Heun HA
Nutrition Research and Practice 2025;19(1):143-153
BACKGROUND/OBJECTIVES:
Inflammatory responses are key pathological factors in various canine diseases, making the control of inflammatory responses vital for canine health.This study examined the anti-inflammatory effects of rutin on DH82 cells, a type of canine macrophage, against lipopolysaccharide (LPS)-induced inflammatory responses.MATERIALS/METHODS: The inflammatory in vitro experimental model was established by stimulating canine macrophage DH82 cells with LPS. To evaluate the inflammationpreventative effects of rutin, analyses were conducted using enzyme-linked immunosorbent assay, western blot, and real-time quantitative reverse transcription polymerase chain reaction.
RESULTS:
Rutin inhibited the LPS-induced increase in the protein and gene levels of proinflammatory cytokines (interleukin [IL]-1β, IL-6, tumor necrosis factor-α), while antiinflammatory cytokines (IL-10, transforming growth factor-β1) levels remained unchanged.Furthermore, rutin suppressed the LPS-induced activation of phosphorylated extracellular signal-regulated kinase, Jun N-terminal kinase, inhibitor of nuclear factor kappa B, and nuclear factor kappa B (NF-κB) in DH82 cells.
CONCLUSION
Rutin exerts anti-inflammatory effects by inhibiting the mitogen-activated protein kinase-NF-κB signaling pathway and reducing the production of pro-inflammatory cytokines in DH82 cells.
9.Retraction: A Case of Cutaneous Rosai-Dofman Disease Treated with Isotretinoin and Pulsed Dye Laser.
Jisu HAN ; Jeong Eun KIM ; Gyeong Hoon PARK ; Chong Hyun WON ; Sung Eun CHANG ; Mi Woo LEE ; Jee Ho CHOI ; Kee Chan MOON
Korean Journal of Dermatology 2017;55(6):388-388
In accordance with this Journal's policy, the entire article has been retracted at the request of the Editors.
10.Retraction: A Case of Cutaneous Rosai-Dofman Disease Treated with Isotretinoin and Pulsed Dye Laser.
Jisu HAN ; Jeong Eun KIM ; Gyeong Hoon PARK ; Chong Hyun WON ; Sung Eun CHANG ; Mi Woo LEE ; Jee Ho CHOI ; Kee Chan MOON
Korean Journal of Dermatology 2017;55(6):388-388
In accordance with this Journal's policy, the entire article has been retracted at the request of the Editors.