1.3D printed metal augment or tibial prosthesis for reconstruction of large bone defects in total knee arthroplasty and revision surgery
Pengfei HU ; Haobo WU ; Jisheng RAN ; Jiapeng BAO ; Lifeng JIANG ; Weiping CHEN ; Xiang ZHAO ; Shigui YAN ; Lidong WU
Chinese Journal of Orthopaedics 2024;44(4):243-249
Objective:To investigate the clinical efficacy of 3D printed metal augment or tibial prosthesis for reconstruction of large bone defects in total knee arthroplasty (TKA) and knee revision surgery.Methods:A total of 7 patients (7 knees) with TKA or knee revision who were admitted to the Department of Orthopaedics of the Second Affiliated Hospital of Zhejiang University School of Medicine with large bone defects from July 2018 to December 2023 were retrospectively analyzed, including 4 patients with TKA and 3 patients with knee revision. There were 3 males and 4 females, aged 58.7±7.6 years (range, 54-68 years), 3 patients with left knee and 4 patients with right knee. All the patients had bone defects in the knee joint (AORI type III), 2 cases had bone defects only in the femur, 4 cases had bone defects only in the tibia, and 1 case had bone defects in both the tibia and femur, which were treated with personalized reconstruction using 3D printing. Hip-knee-ankle angles, American Knee Society score (KSS) before and after surgery were compared, and postoperative complications were observed.Results:All patients successfully completed the operation, and the operation time was 189.3±35.5 min (range, 125-240 min). Complex TKA was performed in 4 cases with surgical times of 175, 195, 210, and 240 min, and revision surgery was performed in 3 cases with surgical times of 125, 180, and 200 min, respectively. Intraoperative blood loss was 114±24.4 ml (range, 100-150 ml). Five cases used 3D printed metal augment, and two used 3D printed one-piece tibial components. All patients were followed up for 2, 2, 5, 6, 7, 20, 57 months, respectively. The KSS of the five patients at 3 months postoperatively were 56, 61, 66, 56, and 56 points, respectively, greater than the preoperative scores of 35, 44, 36, 27, and 41 points. The KSS functional scores of the five patients at 3 months postoperatively were 45, 45, 45, 30, and 45 points, respectively, which were greater than the preoperative scores of 30, 30, 15, 20, and 20 points. The hip-knee-ankle angle was 181.8°±3.4° (range, 177.9° to 188.0°) at the final follow-up and 175.8°±12.4° (range, 153.3° to 192.1°) before surgery, with no significant difference ( t=-1.230, P=0.242). At the final follow-up, the 3D printed component was well integrated with the bone surface, the prosthesis was securely positioned, and the force lines of the lower limbs were normal. There were no postoperative complications such as poor wound healing, infection, fat liquefaction, nerve injury, deep vein thrombosis of lower limbs, knee joint stiffness, periprosthesis infection and loosening. Conclusion:Using 3D printed metal augment or tibial prosthesis to reconstruct the huge bone defect in TKA and revision has a satisfactory early clinical effect, satisfactory joint function and good surgical safety.