1.Left Atrial Appendage Occlusion Under the Guidance of Local Anesthesia and Modified Transseptal Puncture Technology
Lihui ZHENG ; Lingmin WU ; Wei SUN ; Jinyue GUO ; Yu QIAO ; Ligang DING ; Gang CHEN ; Yan YAO
Chinese Circulation Journal 2017;32(7):646-649
To explore the safety and efficacy of left atrial appendage (LAA) occlusion under the guidance of local anesthesia and modified transseptal puncture technology by coronary sinus assisted positioning in patients with nonvavular atrial fibrillation (NVAF). Methods: A total of 16 NVAF patients received local anesthesia and percutaneous LAmbre or Amplatzer cardiac plug occluder implantation. There were 12 males and the patients mean age was at (71.0±6.0) years with CHA2DS2-VASc score at (4.1±1.5); all patients had walfarin contradiction or with walfarin related side effect. Transseptal puncture was conducted by coronary sinus catheter as the anatomic location marker. Results: All 16 patients finished transseptal puncture and no relevant complication occurred. 15/16 (93.8%) patients had successful LAA occlusion, 1 patient was abandoned because of LAA anatomic structure variation. The mean operative time was (65.0±23.0) min and the mean X-ray exposure time was (12.0±3.0) min. The mean diameter of occluder was (32.5±6.0)mm. Conclusion: LAA occlusion was safe and effective with local anesthesia and modified transseptal puncture technology by coronary sinus assisted positioning in relevant patients.
2.The Effectiveness of Green Tea or Green Tea Extract on Insulin Resistance and Glycemic Control in Type 2 Diabetes Mellitus: A Meta-Analysis.
Jinyue YU ; Peige SONG ; Rachel PERRY ; Chris PENFOLD ; Ashley R COOPER
Diabetes & Metabolism Journal 2017;41(4):251-262
Green tea or green tea extract (GT/GTE) has been demonstrated to reduce insulin resistance and improve glycemic control. However, evidence for this health beneficial effect is inconsistent. This systematic review evaluated the effect of GT/GTE on insulin resistance and glycemic control in people with pre-diabetes/type 2 diabetes mellitus (T2DM). Ovid MEDLINE, Embase, AMED, Web of Science, and the Cochrane Library were searched up to April 2017 for randomised controlled trials of participants with pre-diabetes or T2DM, where the intervention was GT/GTE. Meta-analysis was performed to assess the standardised mean difference (SMD) in biomarkers of insulin resistance and glycemic control between GT/GTE and placebo groups. Six studies (n=382) were pooled into random-effects meta-analysis. Overall, no differences were found between GT/GTE and the placebo for glycosylated hemoglobin (HbA1c: SMD, −0.32; 95% confidence interval [CI], −0.86 to 0.23), homeostatic model assessment for insulin resistance (HOMA-IR: SMD, 0.10; 95% CI, −0.17 to 0.38), fasting insulin (SMD, −0.25; 95% CI, −0.64 to 0.15), and fasting glucose (SMD, −0.10; 95% CI, −0.50 to 0.30). No evidence support the consumption of GT/GTE could reduce the levels of HbA1c, HOMA-IR, fasting insulin, or fasting glucose in people with pre-diabetes/T2DM. However, the studies included were small and of varying quality.
Biomarkers
;
Diabetes Mellitus
;
Diabetes Mellitus, Type 2*
;
Fasting
;
Glucose
;
Hemoglobin A, Glycosylated
;
Insulin Resistance*
;
Insulin*
;
Tea*
3.Gut microbiota-based pharmacokinetic-pharmacodynamic study and molecular mechanism of specnuezhenide in the treatment of colorectal cancer targeting carboxylesterase
Hang YU ; Hui XU ; Xinyu YANG ; Zhengwei ZHANG ; Jiachun HU ; Jinyue LU ; Jie FU ; Mengmeng BU ; Haojian ZHANG ; Zhao ZHAI ; Jingyue WANG ; Jiandong JIANG ; Yan WANG
Journal of Pharmaceutical Analysis 2023;13(9):1024-1040
Specnuezhenide(SNZ)is among the main components of Fructus Ligustri Lucidi,which has anti-inflammation,anti-oxidation,and anti-tumor effect.The low bioavailability makes it difficult to explain the mechanism of pharmacological effect of SNZ.In this study,the role of the gut microbiota in the metabolism and pharmacokinetics characteristics of SNZ as well as the pharmacological meaning were explored.SNZ can be rapidly metabolized by the gut microbiome,and two intestinal bacterial metabolites of SNZ,salidroside and tyrosol,were discovered.In addition,carboxylesterase may be the main intestinal bacterial enzyme that mediates its metabolism.At the same time,no metabolism was found in the incubation system of SNZ with liver microsomes or liver homogenate,indicating that the gut microbiota is the main part involved in the metabolism of SNZ.In addition,pharmacokinetic studies showed that salidroside and tyrosol can be detected in plasma in the presence of gut microbiota.Interestingly,tumor development was inhibited in a colorectal tumor mice model administered orally with SNZ,which indicated that SNZ exhibited potential to inhibit tumor growth,and tissue distribution studies showed that salidroside and tyrosol could be distributed in tumor tissues.At the same time,SNZ modulated the structure of gut microbiota and fungal group,which may be the mechanism governing the antitumoral activity of SNZ.Furthermore,SNZ stimulates the secretion of short-chain fatty acids by intestinal flora in vitro and in vivo.In the future,targeting gut microbes and the interaction between natural products and gut microbes could lead to the discovery and development of new drugs.
4.Unsupervised deep learning for identifying the O 6-carboxymethyl guanine by nanopore sequencing.
Xiaoyu GUAN ; Yu WANG ; Jinyue ZHANG ; Wei SHAO ; Shuo HUANG ; Daoqiang ZHANG
Journal of Biomedical Engineering 2022;39(1):139-148
O 6-carboxymethyl guanine(O 6-CMG) is a highly mutagenic alkylation product of DNA that causes gastrointestinal cancer in organisms. Existing studies used mutant Mycobacterium smegmatis porin A (MspA) nanopore assisted by Phi29 DNA polymerase to localize it. Recently, machine learning technology has been widely used in the analysis of nanopore sequencing data. But the machine learning always need a large number of data labels that have brought extra work burden to researchers, which greatly affects its practicability. Accordingly, this paper proposes a nano-Unsupervised-Deep-Learning method (nano-UDL) based on an unsupervised clustering algorithm to identify methylation events in nanopore data automatically. Specially, nano-UDL first uses the deep AutoEncoder to extract features from the nanopore dataset and then applies the MeanShift clustering algorithm to classify data. Besides, nano-UDL can extract the optimal features for clustering by joint optimizing the clustering loss and reconstruction loss. Experimental results demonstrate that nano-UDL has relatively accurate recognition accuracy on the O 6-CMG dataset and can accurately identify all sequence segments containing O 6-CMG. In order to further verify the robustness of nano-UDL, hyperparameter sensitivity verification and ablation experiments were carried out in this paper. Using machine learning to analyze nanopore data can effectively reduce the additional cost of manual data analysis, which is significant for many biological studies, including genome sequencing.
Deep Learning
;
Guanine
;
Nanopore Sequencing
;
Nanopores
;
Porins/genetics*
5.Berberine ameliorates chronic kidney disease through inhibiting the production of gut-derived uremic toxins in the gut microbiota.
Libin PAN ; Hang YU ; Jie FU ; Jiachun HU ; Hui XU ; Zhengwei ZHANG ; Mengmeng BU ; Xinyu YANG ; Haojian ZHANG ; Jinyue LU ; Jiandong JIANG ; Yan WANG
Acta Pharmaceutica Sinica B 2023;13(4):1537-1553
At present, clinical interventions for chronic kidney disease are very limited, and most patients rely on dialysis to sustain their lives for a long time. However, studies on the gut-kidney axis have shown that the gut microbiota is a potentially effective target for correcting or controlling chronic kidney disease. This study showed that berberine, a natural drug with low oral availability, significantly ameliorated chronic kidney disease by altering the composition of the gut microbiota and inhibiting the production of gut-derived uremic toxins, including p-cresol. Furthermore, berberine reduced the content of p-cresol sulfate in plasma mainly by lowering the abundance of g_Clostridium_sensu_stricto_1 and inhibiting the tyrosine-p-cresol pathway of the intestinal flora. Meanwhile, berberine increased the butyric acid producing bacteria and the butyric acid content in feces, while decreased the renal toxic trimethylamine N-oxide. These findings suggest that berberine may be a therapeutic drug with significant potential to ameliorate chronic kidney disease through the gut-kidney axis.