1.A PRELIMINARY STUDY ON IMMUNE REGULATION OF AMMONIUN GLYCYRRHIZANATE
Ren ZHANG ; Jinxuan CHENG ; Zhengang WANG
Chinese Pharmacological Bulletin 1986;0(06):-
After mice given Ammoniun Glycyrrhizanate orally, the spleen weight, the number of leukocytes in peripheral circulation and carbon particle cleaning index increased significantly. Rat spleen lymphocytes exposed to 8 x10-7M and 8 x10-10M of Ammoniun Glycyrrhizanate produced levels of PGE that were 1 - 2 -fold greater than that of the control lymphocytes cultured in medium alone. We also found that the levels of PGE2 and cAMP in mice spleen increased significantly after P.O. Ammoninn Glycyrrhizanate, which we suggested might be the mechanisms of immane regulatory functions of Ammoniun Glycyr rhizanate.
2.EFFECT OF TOTAL ARALOSIDES ON PROSTAGLANDINS AND CYCLIC NUCLEOTIDE
Jun REN ; Jinxuan CHENG ; Zhengang WANG ;
Chinese Pharmacological Bulletin 1987;0(03):-
The total aralosides extracted from Aralia elata (Miq) Seem. were studied in mice ( 50 mg/kg/d for 7 d ) to investigate the pharmacological mechanisms on the molecular level.The results showed that aralosides can obviously stimulate the production of PGE2、PGF2, and cAMP but reduce the cGMP level and nave no effect on histamine release.It is suggested that the changes in the level of cyclic nucleotide might be due to the alternations of PGs, which is now been suspected as the "Second Messenger" . These findings could explain in part the pharmacological activities of aralosides on the molecular level.
3.Effects of Oligo-peptide I-C-F-6 in Carapax Trionycis on Rats with Liver Fibrosis Induced by CCl4
Mina WANG ; Jinxuan LIN ; Ying YANG ; Shixun XU ; Huazheng ZHANG ; Liwei REN ; Haimin LEI ; Yuzhong ZHANG
Chinese Journal of Information on Traditional Chinese Medicine 2014;(8):42-45
Objective To study effects of oligo-peptide I-C-F-6 in carapax trionycis on rats with liver fibrosis induced by CCl4;To discuss its anti-liver fibrosis effects and possible mechanisms. Methods Forty-eight SD male rats were randomly divided into normal control group, model group, bifendate group, and oligo-peptide I-C-F-6 group, 12 in each group.CCl4 was injected intraperitoneally to build rat liver fibrosis model.Oligo-peptide I-C-F-6 group and bifendate group were given subcutaneous injection of oligo-peptide I-C-F-6 (0.12μg/g) or bifendate (0.12μg/g). At the same time, normal control group and model group were giventhe same volume of saline for seven weeks. The levels ofALT, AST,MDA, SOD, IL-4, IL-10 and TNF-α were tested.The histomorphology changes were observed under optical microscopeby HE, and the expressions of transforming growth TGF-β1 were determined by immunohistochemistry.Results Compared with model group, serum levels of ALT and AST were reduced evidently in oligo-peptide I-C-F-6 group. Hepatic content of MDA, IL-4 and TNF-α decreased, while SOD activity and IL-10 were found significantly increased. Liver fibrosis was ameliorated significantly. Hepatic expressions of TGF-β1 were weakly positive.Conclusion Oligo-peptide I-C-F-6 can ameliorate hepatocyte damage of model rats, thus it has anti-oxidative and anti-liver fibrosis effects on liver fibrosis in rats.
4.Effect of mild hypercapnia during the recovery period on the emergence time from total intravenous anesthesia: a randomized controlled trial
Lan LIU ; Xiangde CHEN ; Qingjuan CHEN ; Xiuyi LU ; Lili FANG ; Jinxuan REN ; Yue MING ; Dawei SUN ; Pei CHEN ; Weidong WU ; Lina YU
Korean Journal of Anesthesiology 2025;78(3):215-223
Background:
Intraoperative hypercapnia reduces the time to emergence from volatile anesthetics, but few clinical studies have explored the effect of hypercapnia on the emergence time from intravenous (IV) anesthesia. We investigated the effect of inducing mild hypercapnia during the recovery period on the emergence time after total IV anesthesia (TIVA).
Methods:
Adult patients undergoing transurethral lithotripsy under TIVA were randomly allocated to normocapnia group (end-tidal carbon dioxide [ETCO2] 35–40 mmHg) or mild hypercapnia group (ETCO2 50-55 mmHg) during the recovery period. The primary outcome was the extubation time. The spontaneous breathing-onset time, voluntary eye-opening time, and hemodynamic data were collected. Changes in the cerebral blood flow velocity in the middle cerebral artery were assessed using transcranial Doppler ultrasound.
Results:
In total, 164 patients completed the study. The extubation time was significantly shorter in the mild hypercapnia (13.9 ± 5.9 min, P = 0.024) than in the normocapnia group (16.3 ± 7.6 min). A similar reduction was observed in spontaneous breathing-onset time (P = 0.021) and voluntary eye-opening time (P = 0.008). Multiple linear regression analysis revealed that the adjusted ETCO2 level was a negative predictor of extubation time. Middle cerebral artery blood flow velocity was significantly increased after ETCO2 adjustment for mild hypercapnia, which rapidly returned to baseline, without any adverse reactions, within 20 min after extubation.
Conclusions
Mild hypercapnia during the recovery period significantly reduces the extubation time after TIVA. Increased ETCO2 levels can potentially enhance rapid recovery from IV anesthesia.
5.Effect of mild hypercapnia during the recovery period on the emergence time from total intravenous anesthesia: a randomized controlled trial
Lan LIU ; Xiangde CHEN ; Qingjuan CHEN ; Xiuyi LU ; Lili FANG ; Jinxuan REN ; Yue MING ; Dawei SUN ; Pei CHEN ; Weidong WU ; Lina YU
Korean Journal of Anesthesiology 2025;78(3):215-223
Background:
Intraoperative hypercapnia reduces the time to emergence from volatile anesthetics, but few clinical studies have explored the effect of hypercapnia on the emergence time from intravenous (IV) anesthesia. We investigated the effect of inducing mild hypercapnia during the recovery period on the emergence time after total IV anesthesia (TIVA).
Methods:
Adult patients undergoing transurethral lithotripsy under TIVA were randomly allocated to normocapnia group (end-tidal carbon dioxide [ETCO2] 35–40 mmHg) or mild hypercapnia group (ETCO2 50-55 mmHg) during the recovery period. The primary outcome was the extubation time. The spontaneous breathing-onset time, voluntary eye-opening time, and hemodynamic data were collected. Changes in the cerebral blood flow velocity in the middle cerebral artery were assessed using transcranial Doppler ultrasound.
Results:
In total, 164 patients completed the study. The extubation time was significantly shorter in the mild hypercapnia (13.9 ± 5.9 min, P = 0.024) than in the normocapnia group (16.3 ± 7.6 min). A similar reduction was observed in spontaneous breathing-onset time (P = 0.021) and voluntary eye-opening time (P = 0.008). Multiple linear regression analysis revealed that the adjusted ETCO2 level was a negative predictor of extubation time. Middle cerebral artery blood flow velocity was significantly increased after ETCO2 adjustment for mild hypercapnia, which rapidly returned to baseline, without any adverse reactions, within 20 min after extubation.
Conclusions
Mild hypercapnia during the recovery period significantly reduces the extubation time after TIVA. Increased ETCO2 levels can potentially enhance rapid recovery from IV anesthesia.
6.Effect of mild hypercapnia during the recovery period on the emergence time from total intravenous anesthesia: a randomized controlled trial
Lan LIU ; Xiangde CHEN ; Qingjuan CHEN ; Xiuyi LU ; Lili FANG ; Jinxuan REN ; Yue MING ; Dawei SUN ; Pei CHEN ; Weidong WU ; Lina YU
Korean Journal of Anesthesiology 2025;78(3):215-223
Background:
Intraoperative hypercapnia reduces the time to emergence from volatile anesthetics, but few clinical studies have explored the effect of hypercapnia on the emergence time from intravenous (IV) anesthesia. We investigated the effect of inducing mild hypercapnia during the recovery period on the emergence time after total IV anesthesia (TIVA).
Methods:
Adult patients undergoing transurethral lithotripsy under TIVA were randomly allocated to normocapnia group (end-tidal carbon dioxide [ETCO2] 35–40 mmHg) or mild hypercapnia group (ETCO2 50-55 mmHg) during the recovery period. The primary outcome was the extubation time. The spontaneous breathing-onset time, voluntary eye-opening time, and hemodynamic data were collected. Changes in the cerebral blood flow velocity in the middle cerebral artery were assessed using transcranial Doppler ultrasound.
Results:
In total, 164 patients completed the study. The extubation time was significantly shorter in the mild hypercapnia (13.9 ± 5.9 min, P = 0.024) than in the normocapnia group (16.3 ± 7.6 min). A similar reduction was observed in spontaneous breathing-onset time (P = 0.021) and voluntary eye-opening time (P = 0.008). Multiple linear regression analysis revealed that the adjusted ETCO2 level was a negative predictor of extubation time. Middle cerebral artery blood flow velocity was significantly increased after ETCO2 adjustment for mild hypercapnia, which rapidly returned to baseline, without any adverse reactions, within 20 min after extubation.
Conclusions
Mild hypercapnia during the recovery period significantly reduces the extubation time after TIVA. Increased ETCO2 levels can potentially enhance rapid recovery from IV anesthesia.
7.Effect of mild hypercapnia during the recovery period on the emergence time from total intravenous anesthesia: a randomized controlled trial
Lan LIU ; Xiangde CHEN ; Qingjuan CHEN ; Xiuyi LU ; Lili FANG ; Jinxuan REN ; Yue MING ; Dawei SUN ; Pei CHEN ; Weidong WU ; Lina YU
Korean Journal of Anesthesiology 2025;78(3):215-223
Background:
Intraoperative hypercapnia reduces the time to emergence from volatile anesthetics, but few clinical studies have explored the effect of hypercapnia on the emergence time from intravenous (IV) anesthesia. We investigated the effect of inducing mild hypercapnia during the recovery period on the emergence time after total IV anesthesia (TIVA).
Methods:
Adult patients undergoing transurethral lithotripsy under TIVA were randomly allocated to normocapnia group (end-tidal carbon dioxide [ETCO2] 35–40 mmHg) or mild hypercapnia group (ETCO2 50-55 mmHg) during the recovery period. The primary outcome was the extubation time. The spontaneous breathing-onset time, voluntary eye-opening time, and hemodynamic data were collected. Changes in the cerebral blood flow velocity in the middle cerebral artery were assessed using transcranial Doppler ultrasound.
Results:
In total, 164 patients completed the study. The extubation time was significantly shorter in the mild hypercapnia (13.9 ± 5.9 min, P = 0.024) than in the normocapnia group (16.3 ± 7.6 min). A similar reduction was observed in spontaneous breathing-onset time (P = 0.021) and voluntary eye-opening time (P = 0.008). Multiple linear regression analysis revealed that the adjusted ETCO2 level was a negative predictor of extubation time. Middle cerebral artery blood flow velocity was significantly increased after ETCO2 adjustment for mild hypercapnia, which rapidly returned to baseline, without any adverse reactions, within 20 min after extubation.
Conclusions
Mild hypercapnia during the recovery period significantly reduces the extubation time after TIVA. Increased ETCO2 levels can potentially enhance rapid recovery from IV anesthesia.
8.Advanced applications of membrane technology in biological detection.
Jinxuan ZHANG ; Jianquan LUO ; Zhongyuan REN ; Hao ZHANG ; Xiangrong CHEN ; Yinhua WAN
Chinese Journal of Biotechnology 2019;35(12):2257-2268
Membrane creates the functions of protection, supporting, dispersion and separation. More functions can be designed by modifying membrane surface and grafting/loading selective ligands or catalysts on the membrane, thus membrane technology has been widely applied in biological detection, and its application approaches becomes diverse. Rational design of functional membranes can meet the demands in different steps of biological detection process, including sample pretreatment, preparation, response and sensing. This review summarized the functionalization methods of filtration membranes, applications of membrane technology in sample preparation and detection process, as well as the research on the integration of functional membranes. By revisiting the research progress on functional membrane design, preparation and applications for biological detection, it is expected to take better advantage of membrane materials structure and performance for constructing efficient and stable detection platform, which is more "adapted" to the detection environment.
Membranes, Artificial