1.Long-term prenatal stress increases susceptibility of N-methyl-D-aspartic acid-induced spasms in infant rats.
Hyeok Hee KWON ; Taekwan LEE ; Jinpyo HONG ; Dong Woon KIM ; Joon Won KANG
Korean Journal of Pediatrics 2018;61(5):150-155
PURPOSE: Infantile spasms, also known as West syndrome, is an age-specific epileptic seizure. Most patients with this condition also exhibit delayed development. This study aimed to determine the effect of long-term prenatal stress on susceptibility to infantile spasms. METHODS: We subjected pregnant rats to acute or chronic immobilization stress. Resulting offspring received N-methyl-D-aspartic acid (15 mg/kg, intraperitoneally) on postnatal day 15, and their behaviors were observed 75 minutes after injection. The expression of KCC2 and GAD67 was also determined using immunohistochemistry. RESULTS: Exposure to long-term prenatal stress increased the frequency of spasms and decreased the latency to onset of spasms compared with offspring exposed to short-term prenatal stress. Expression of KCC2 and GAD67 also decreased in the group exposed to long-term prenatal stress compared with the group exposed to short-term prenatal stress. CONCLUSION: Our study suggests that exposure to long-term prenatal stress results in increased susceptibility to seizures.
Animals
;
Epilepsy
;
gamma-Aminobutyric Acid
;
Glutamate Decarboxylase
;
Humans
;
Immobilization
;
Immunohistochemistry
;
Infant*
;
Infant, Newborn
;
N-Methylaspartate
;
Prenatal Exposure Delayed Effects
;
Rats*
;
Seizures
;
Spasm*
;
Spasms, Infantile
2.Analgesic Effect of Toll-like Receptor 4 Antagonistic Peptide 2 on Mechanical Allodynia Induced with Spinal Nerve Ligation in Rats
Yuhua YIN ; Hyewon PARK ; Sun Yeul LEE ; Won Hyung LEE ; Hee Jung SONG ; Jinhyun KIM ; Dong Woon KIM ; Jinpyo HONG
Experimental Neurobiology 2019;28(3):352-361
Neuroinflammation is one of the key mechanisms of neuropathic pain, which is primarily mediated by the Toll-like receptor 4 (TLR4) signaling pathways in microglia. Therefore, TLR4 may be a reasonable target for treatment of neuropathic pain. Here, we examined the analgesic effect of TLR4 antagonistic peptide 2 (TAP2) on neuropathic pain induced by spinal nerve ligation in rats. When lipopolysaccharide (LPS)-stimulated BV2 microglia cells were treated with TAP2 (10 µM), the mRNA levels of proinflammatory mediators, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS), were markedly decreased by 54–83% as determined by quantitative PCR (qPCR) analysis. Furthermore, when TAP2 (25 nmol in 20 µL PBS) was intrathecally administered to the spinal nerve ligation-induced rats on day 3 after surgery, the mechanical allodynia was markedly decreased for approximately 2 weeks in von Frey filament tests, with a reduction in microglial activation. On immunohistochemical and qPCR analyses, both the level of reactive oxygen species and the gene expression of the proinflammatory mediators, such as TNF-α, IL-1β, IL-6, COX-2, and iNOS, were significantly decreased in the ipsilateral spinal dorsal horn. Finally, the analgesic effect of TAP2 was reproduced in rats with monoiodoacetate-induced osteoarthritic pain. The findings of the present study suggest that TAP2 efficiently mitigates neuropathic pain behavior by suppressing microglial activation, followed by downregulation of neuropathic pain-related factors, such as reactive oxygen species and proinflammatory molecules. Therefore, it may be useful as a new analgesic for treatment of neuropathic pain.
Analgesics
;
Animals
;
Down-Regulation
;
Gene Expression
;
Hyperalgesia
;
Interleukin-6
;
Interleukins
;
Ligation
;
Microglia
;
Neuralgia
;
Nitric Oxide Synthase Type II
;
Polymerase Chain Reaction
;
Prostaglandin-Endoperoxide Synthases
;
Rats
;
Reactive Oxygen Species
;
RNA, Messenger
;
Spinal Cord Dorsal Horn
;
Spinal Nerves
;
Toll-Like Receptor 4
;
Toll-Like Receptors
;
Tumor Necrosis Factor-alpha
3.Validation of the OncoHepa test, a multigene expression profile test, and the tumor marker-volume score to predict postresection outcome in small solitary hepatocellular carcinomas.
Su Min HA ; Shin HWANG ; Jin Young PARK ; Young Joo LEE ; Ki Hun KIM ; Gi Won SONG ; Dong Hwan JUNG ; Yun Suk YU ; Jinpyo KIM ; Kyoung Jin LEE ; Eunyoung TAK ; Yo Han PARK ; Sung Gyu LEE
Annals of Surgical Treatment and Research 2018;95(6):303-311
PURPOSE: OncoHepa test is a multigene expression profile test developed for assessment of hepatocellular carcinoma (HCC) prognosis. Multiplication of α-FP, des-γ-carboxy prothrombin (DCP) and tumor volume (TV) gives the α-FP-DCP-volume (ADV) score, which is also developed for assessment of HCC prognosis. METHODS: The predictive powers of OncoHepa test and ADV score were validated in 35 patients who underwent curative hepatic resection for naïve solitary HCCs ≤5 cm. RESULTS: Median tumor diameter was 3.0 cm. Tumor recurrence and patient survival rates were 28.6% and 100% at 1 year, 48.6% and 82.9% at 3 years, and 54.3% and 71.4% at 5 years, respectively. The site of first tumor recurrence was the remnant liver in 18, lung in 1, and the peritoneum in 1. All patients with HCC recurrence received locoregional treatment. OncoHepa test showed marginal prognostic significance for tumor recurrence and patient survival. ADV score at 4log also showed marginal prognostic difference with respect to tumor recurrence and patient survival. Combination of these 2 tests resulted in greater prognostic significance for both tumor recurrence (P = 0.046) and patient survival (P = 0.048). CONCLUSION: Both OncoHepa test and ADV score have considerably strong prognostic power, thus individual and combined findings of OncoHepa test and ADV score will be helpful to guide postresection surveillance in patients with solitary HCCs ≤5 cm.
Carcinoma, Hepatocellular*
;
Humans
;
Liver
;
Lung
;
Peritoneum
;
Prognosis
;
Prothrombin
;
Recurrence
;
Survival Rate
;
Tumor Burden
4.Calpain-2 as a Treatment Target in Prenatal Stress-induced Epileptic Spasms in Infant Rats
Hyeok Hee KWON ; Chiranjivi NEUPANE ; Juhee SHIN ; Do Hyeong GWON ; Yuhua YIN ; Nara SHIN ; Hyo Jung SHIN ; Jinpyo HONG ; Jin Bong PARK ; YoonYoung YI ; Dong Woon KIM ; Joon Won KANG
Experimental Neurobiology 2019;28(4):529-536
Stress can induce a serious epileptic encephalopathy that occurs during early infancy. Recent studies have revealed that prenatal stress exposure is a risk factor for the development of infantile spasms. Our previous work demonstrates that prenatal stress with betamethasone-induced alterations to the expression of the K⁺/Cl⁻ co-transporter (KCC2) in gamma-aminobutyric acid (GABA) interneurons lowers the seizure threshold in exposed animals. Here, we further investigated the mechanisms involved in this KCC2 dysfunction and explored possible treatment options. We stressed Sprague-Dawley rats prenatally and further treated dams with betamethasone on gestational day 15, which increases seizure susceptibility and NMDA (N-Methyl-D-aspartate)-triggered spasms on postnatal day 15. In this animal model, first, we evaluated baseline calpain activity. Second, we examined the cleavage and dephosphorylation of KCC2. Finally, we checked the effect of a calpain inhibitor on seizure occurrence. The phosphorylated-N-methyl-D-aspartate Receptor 2B (NR2B):non-phosphorylated NR2B ratio was found to be higher in the cortex of the prenatally stressed beta-methasone model. We further found that the betamethasone model exhibited increased phosphorylation of calpain-2 and decreased phosphorylation of KCC2 and Glutamic acid decarboxylase 67 (GAD67). After using a calpain inhibitor in prenatal-stress rats, the seizure frequency decreased, while latency increased. GABAergic depolarization was further normalized in prenatal-stress rats treated with the calpain inhibitor. Our study suggests that calpain-dependent cleavage and dephosphorylation of KCC2 decreased the seizure threshold of rats under prenatal stress. Calpain-2 functions might, thus, be targeted in the future for the development of treatments for epileptic spasms.
Animals
;
Betamethasone
;
Brain Diseases
;
Calpain
;
Epilepsy
;
gamma-Aminobutyric Acid
;
Glutamate Decarboxylase
;
Humans
;
Infant
;
Infant, Newborn
;
Interneurons
;
Models, Animal
;
N-Methylaspartate
;
Phosphorylation
;
Rats
;
Rats, Sprague-Dawley
;
Risk Factors
;
Seizures
;
Spasm
;
Spasms, Infantile