1.Mechanism of Acanthopanacis Senticosi Radix et Rhizoma seu Caulis Extract in Treating Parkinson's Disease Based on Lipidomics
Ningxia LU ; Ao GAO ; Yehao WANG ; Jinjin YANG ; Yi LU ; Fang LU ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):91-99
ObjectiveAbnormal lipids in neurons can cause the accumulation of α-synuclein(α-syn). This study aimed to explore the mechanism of Acanthopanacis Senticosi Radix et Rhizoma seu Caulis extract (ASH) in treating Parkinson's disease (PD) mice using lipidomics combined with network pharmacology. MethodsMice were divided into the blank group, model group and ASH (45.5 mg·kg-1) group. Motor ability was evaluated by pole climbing time and autonomous activity count; The oxidative stress indicators were detected by enzyme-linked immunosorbent assay (ELISA). Lipid biomarkers in brain tissues were screened and identified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and metabolic pathway analysis was conducted. The key targets of ASH for PD treatment were explored using network pharmacology. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used for pathway enrichment analysis, and the "compound-reaction-enzyme-gene" network was constructed using the MetScape plugin. The protein expression levels of glutathione S-transferase P1 (GSTP1), glutathione S-transferase Mu 2 (GSTM2), prostaglandin peroxide synthase 1 (PTGS1), prostaglandin peroxide synthase 2 (PTGS2), and prostaglandin E synthase (PTGES) were validated by Western blot. ResultsCompared with the blank group, the model group showed significantly prolonged pole climbing time and reduced autonomous activity count (P<0.01). Compared with the model group, the ASH group demonstrated significantly faster pole climbing and increased autonomous activity count (P<0.01). The model group exhibited significantly decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels, and increased malondialdehyde (MDA) level in brain tissues compared with the blank group (P<0.01). The ASH group showed increased SOD and GSH-Px levels and decreased MDA level compared with the model group (P<0.05, P<0.01). Lipidomics analysis identified 10 differential metabolites and 8 differential metabolic pathways. Network pharmacological analysis revealed 213 intersection targets between ASH components and PD, with KEGG enrichment involving the sphingolipid signaling pathway, lipid arteriosclerosis, phosphoinositide 3-kinase/protein kinase B(PI3K/Akt) signaling pathway, mitogen-activated protein kinase(MAPK) signaling pathway, and hypoxia inducible factor-1(HIF-1) signaling pathway. Integrated lipidomics and network pharmacology analysis highlighted the central role of the arachidonic acid metabolic pathway. The Western blot results showed that ASH effectively up-regulated GSTP1, GSTM2, and PTGS1 protein expression, and down-regulated PTGS2 and PTGES protein expression. ConclusionASH can ameliorate behavioral deficits, exert antioxidant effects, regulate lipid differential metabolites and the arachidonic acid metabolic pathway, thereby exerting therapeutic effects in PD model mice.
2.Research Progress on Human Umbilical Cord Mesenchymal Stem Cells in the Treatment of Knee Osteoarthritis
Jin GONG ; Jinjin ZHANG ; Lili CHEN ; Hui WANG ; Yanchao XING
Medical Journal of Peking Union Medical College Hospital 2025;16(1):75-82
Knee osteoarthritis (KOA) is a prevalent degenerative joint disease characterized by synovial inflammation, cartilage loss. Often manifesting as joint pain and limited mobility, it severely affects the quality of life of patients. Traditional treatment methods such as pharmacological injections and surgical interventions primarily aim to alleviate symptoms but have limited effects on cartilage repair. Human umbilical cord mesenchymal stem cells (hUC-MSCs), due to their anti-inflammatory and chondrogenic capabilities, is considered a new hope for the treatment of KOA. This article synthesizes the latest research findings from both domestic and international sources to discuss the theoretical basis for the clinical application of hUC-MSCs in treating KOA, clinical study design, and efficacy evaluation. It also addresses the challenges in the clinical application of hUC-MSCs and explores future directions, in the hope of providing feasible theoretical support for the treatment of KOA with hUC-MSCs.
3.Blood management strategy for massive transfusion patients in frigid plateau region
Haiying WANG ; Jinjin ZHANG ; Lili CHEN ; Xiaoli SUN ; Cui WEI ; Yongli HUANG ; Yingchun ZHU ; Chong CHEN ; Yanchao XING
Chinese Journal of Blood Transfusion 2025;38(2):268-273
[Objective] To explore the strategy of blood management in patients with massive transfusion in the frigid plateau region. [Methods] The treatment process of a patient with liver rupture in the frigid plateau region was analyzed, and the blood management strategy of the frigid plateau region was discussed in combination with the difficulties of blood transfusion and literature review. [Results] The preoperative complete blood count (CBC) test results of the patient were as follows: RBC 3.14×1012/L, Hb 106 g/L, HCT 30.40%, PLT 115.00×109/L; coagulation function: PT 18.9 s, FiB 1.31 g/L, DD > 6 μg/mL, FDP 25.86 μg/mL; ultrasound examination and imaging manifestations suggested liver contusion and laceration / intraparenchymal hematoma, splenic contusion and laceration, and massive blood accumulation in the abdominal cavity; it was estimated that the patient's blood loss was ≥ 2 000 mL, and massive blood transfusion was required during the operation; red blood cell components were timely transfused during the operation, and the blood component transfusion was guided according to the patient's CBC and coagulation function test results, providing strong support and guarantee for the successful treatment of the patient. The patient recovered well after the operation, and the CBC test results were as follows: RBC 4.32×1012/L, Hb 144 g/L, HCT 39.50%, PLT 329.00×109/L; coagulation function: APTT 29.3 s, PT 12.1 s, FiB 2.728 g/L, DD>6 μg/mL, FDP 25.86 μg/mL. The patient was discharged after 20 days, and regular follow-up reexamination showed no abnormal results. [Conclusion] Individualized blood management strategy should comprehensively consider the patient’s clinical symptoms, the degree of hemoglobin decline, dynamic coagulation test results and existing treatment conditions. Efficient and reasonable patient blood management strategies can effectively improve the clinical outcomes of massive transfusion patients in the frigid plateau region.
4.Risk of Circulating Tumor Cells and Clinical Blood Transfusion
Haiying WANG ; Jinjin ZHANG ; Xiaoli SUN ; Yanchao XING
Medical Journal of Peking Union Medical College Hospital 2025;16(5):1266-1274
Circulating tumor cells (CTCs) have the ability to sow tumors and can be found in the peripheral blood of patients with precancerous lesions and healthy people. However, CTCs are not currently screened in the donors blood. A large number of allogeneic blood transfusions occurred worldwide each year, and allogeneic blood transfusions expose recipients to the risk of transmission and affect tumors associated with donor CTCs. Although leukocyte filtration can not completely remove tumor cells in the blood, it can effectively reduce the number of white blood cells in the blood and reduce their proliferation ability. Blood irradiation can effectively destroy the DNA of CTCs in the blood, and inhibit the occurrence and metastasis of tumors caused by the infusion of allogeneic blood containing CTCs. Therefore, we should pay attention to the potential risk of CTCs on clinical transfusion, and strengthen the preclinical treatment of blood to avoid donor-related tumor infection in blood recipients due to clinical transfusion.
5.Locally producing antibacterial peptide to deplete intratumoral pathogen for preventing metastatic breast cancer.
Shizhen GENG ; Tingting XIANG ; Yaru SHI ; Mengnian CAO ; Danyu WANG ; Jing WANG ; Xinling LI ; Haiwei SONG ; Zhenzhong ZHANG ; Jinjin SHI ; Junjie LIU ; Airong LI ; Ke SUN
Acta Pharmaceutica Sinica B 2025;15(2):1084-1097
Metastatic dissemination is the major cause of death from breast-cancer (BC). Fusobacterium nucleatum (F.n) is widely enriched in BC and has recently been identified as one of the high-risk factors for promoting BC metastasis. Here, with an experimental model, we demonstrated that intratumoral F.n induced BC aggressiveness by transcriptionally activating Epithelial-mesenchymal transition-associated genes. Therefore, the F.n may be a potential target to prevent metastasis. Given the fact that cancer-associated fibroblasts (CAFs) are abundant in BC and located near blood vessels, we report an optogenetic system that drives CAF to in situ produce human antibacterial peptide LL37, with the characteristics of biosafety and freely intercellular trafficking, for depleting intratumoral F.n, leading to a 72.1% reduction in lung metastatic nodules number without affecting the balance of the systemic flora. Notably, mild photothermal treatment was found that could normalize CAF, contributing to synergistically inhibiting BC metastasis. In addition, the system can also simultaneously encode a gene of TNF-related apoptosis-inducing ligand to suppress the primary tumor. Together, our study highlights the potential of local elimination of tumor pathogenic bacteria to prevent BC metastasis.
6.Guijianyu alleviates advanced glycation endproducts-induced mouse renal podocyte injury by inhibiting the AGEs-RAGE signaling pathway.
Qianqian MA ; Yuqi NIU ; Mingyu ZUO ; Xin LI ; Junke FU ; Jinjin WANG
Journal of Southern Medical University 2025;45(9):1938-1945
OBJECTIVES:
To investigate the mechanism by which Guijianyu ameliorates podocyte injury in a mouse model of diabetic kidney disease (DKD) induced by advanced glycation endproducts (AGEs).
METHODS:
Sixty db/db mouse models of DKD were randomized equally into 5 groups for treatment with saline, Guijianyu extract at 3 doses or irbesartan for 12 weeks, and the changes in renal pathology and structure were observed using transmission electron microscopy, and the expressions of related genes and key proteins were detected using RT-qPCR and immunohistochemistry. In cultured MPC-5 cells incubated with 50 mg/L AGEs-BSA for 24 h, the effect of different concentrations of Guijianyu extract on cell viability was examined with CCK-8 assay; Western blotting was performed to detect the protein expressions of RAGE, VEGFA, TNF-α, NF-κB(p65), IL-6 and caspase-3, and the mRNA expressions of RAGE, NF-κB (p65), VEGFA and IL-6 were detected with RT-qPCR.
RESULTS:
In mouse models of DKD, treatment with high-dose Guijianyu extract significantly reduced renal expressions of RAGE, VEGFA, NF-κB(p65), and IL-6 proteins and the mRNA expressions of RAGE, NF-κB, and IL-6. In MPC-5 cells, exposure to AGEs significantly reduced cell viability and increased the protein expressions of RAGE, NF‑κB (p65), VEGFA, TNF-α, IL-6 and caspase-3 (P<0.05) and mRNA expressions of RAGE, NF-κB (p65), VEGFA, and IL-6. Treatment with Guijianyu extract obviously improved cell viability and reduced the expressions of RAGE, NF-κB(p65), VEGFA, TNF-α, IL-6, and caspase-3. Furthermore, Guijianyu extract effectively reversed RAGE agonist-induced elevation of protein expressions of RAGE, VEGFA, TNF-α, IL-6, and caspase-3 and mRNA expressions of RAGE, NF-κB (p65), IL-6, and VEGFA in MPC-5 cells.
CONCLUSIONS
Guijianyu extract ameliorates AGEs-induced mouse renal podocyte injury in DKD by inhibiting the activation of AGEs-RAGE signaling pathway and reducing the expressions of pro-inflammatory cytokines and vascular endothelial growth factors.
Animals
;
Glycation End Products, Advanced
;
Drugs, Chinese Herbal/pharmacology*
;
Mice
;
Signal Transduction/drug effects*
;
Podocytes/pathology*
;
Diabetic Nephropathies/drug therapy*
;
Receptor for Advanced Glycation End Products
;
Vascular Endothelial Growth Factor A/metabolism*
;
Interleukin-6/metabolism*
;
Male
7.Circadian disruption by simulated shift work aggravates periodontitis via orchestrating BMAL1 and GSDMD-mediated pyroptosis.
Yazheng WANG ; Rui LI ; Qingyuan YE ; Dongdong FEI ; Xige ZHANG ; Junling HUANG ; Tingjie LIU ; Jinjin WANG ; Qintao WANG
International Journal of Oral Science 2025;17(1):14-14
Approximately 20% to 30% of the global workforce is engaged in shift work. As a significant cause of circadian disruption, shift work is closely associated with an increased risk for periodontitis. Nevertheless, how shift work-related circadian disruption functions in periodontitis remains unknown. Herein, we employed a simulated shift work model constructed by controlling the environmental light-dark cycles and revealed that shift work-related circadian disruption exacerbated the progression of experimental periodontitis. RNA sequencing and in vitro experiments indicated that downregulation of the core circadian protein brain and muscle ARNT-like protein 1 (BMAL1) and activation of the Gasdermin D (GSDMD)-mediated pyroptosis were involved in the pathogenesis of that. Mechanically, BMAL1 regulated GSDMD-mediated pyroptosis by suppressing NOD-like receptor protein 3 (NLRP3) inflammasome signaling through modulating nuclear receptor subfamily 1 group D member 1 (NR1D1), and inhibiting Gsdmd transcription via directly binding to the E-box elements in its promoter. GSDMD-mediated pyroptosis accelerated periodontitis progression, whereas downregulated BMAL1 under circadian disruption further aggravated periodontal destruction by increasing GSDMD activity. And restoring the level of BMAL1 by circadian recovery and SR8278 injection alleviated simulated shift work-exacerbated periodontitis via lessening GSDMD-mediated pyroptosis. These findings provide new evidence and potential interventional targets for circadian disruption-accelerated periodontitis.
Pyroptosis/physiology*
;
ARNTL Transcription Factors/metabolism*
;
Animals
;
Periodontitis/etiology*
;
Mice
;
Phosphate-Binding Proteins/metabolism*
;
Shift Work Schedule/adverse effects*
;
Intracellular Signaling Peptides and Proteins/metabolism*
;
Mice, Inbred C57BL
;
Male
;
Disease Models, Animal
;
Gasdermins
8.Establishment and optimization of a genetic manipulation system for Staphylococcus pasteuri.
Tinghao ZHANG ; Ziqi WANG ; Yuxin SONG ; Jinjin WANG ; Feng GUO ; Yongjun ZHANG ; Fuping LU ; Ming LI
Chinese Journal of Biotechnology 2025;41(9):3604-3616
One of the technical bottlenecks limiting the high yield of 1,4-butanediamine is the insufficient tolerance of strains to 1,4-butanediamine. Enhancing the tolerance of strains to 1,4-butanediamine is therefore a primary challenge that needs to be addressed for the construction of strains with high yields of 1,4-butanediamine. Staphylococcus pasteuri 326180 exhibits exceptional tolerance to high-concentration 1,4-butanediamine, serving as both an ideal model for studying the mechanism underlying the 1,4-butanediamine tolerance and a novel host for constructing strains capable of efficiently producing 1,4-butanediamine. However, for both the research on the tolerance mechanism and the modification of chassis strains, gene editing of S. pasteuri needs to be carried out at the molecular level. The research objective of this paper is to establish a genetic manipulation system for S. pasteuri, laying foundation for subsequent studies on tolerance mechanism and the modification of chassis strains. This study systematically optimized the electroporation conditions, including key parameters such as the growth phase of cells, electric field strength, electroporation buffer, and recovery medium, successfully establishing an electroporation method for S. pasteuri. Additionally, we constructed the gene editing plasmid pCpfOA by replacing the resistance expression cassette, optimized the selection markers for gene editing, and finally established a CRISPR/Cpf1-based gene editing technology for S. pasteuri, achieving an editing efficiency of 90%. The genetic manipulation system of S. pasteuri established in this study provides technical support for research into the tolerance mechanism of this bacterium and the genetic modification of chassis strains.
Staphylococcus/drug effects*
;
Gene Editing/methods*
;
Electroporation/methods*
;
Plasmids/genetics*
;
CRISPR-Cas Systems
;
Genetic Engineering/methods*
9.Euonymus alatus delays progression of diabetic kidney disease in mice by regulating EGFR tyrosine kinase inhibitor resistance signaling pathway
Jinjin WANG ; Wenfei CUI ; Xuewei DOU ; Binglei YIN ; Yuqi NIU ; Ling NIU ; Guoli YAN
Journal of Southern Medical University 2024;44(7):1243-1255
Objective To explore the therapeutic mechanism of Euonymus alatus for diabetic kidney disease(DKD).Methods TCMSP,PubChem and Swiss Target Prediction databases were used to obtain the active ingredients in Euonymus alatus and their targets.GEO database and R language were used to analyze the differentially expressed genes in DKD.The therapeutic targets of DKD were obtained using GeneCards,DisGeNet,OMIM and TTD databases.The protein-protein interaction network and the"drug-component-target-disease"network were constructed for analyzing the topological properties of the core targets,which were functionally annotated using GO and KEGG pathway enrichment analyses.Molecular docking was performed for the core targets and the main pharmacologically active components,and the results were verified in db/db mice.Results Analysis of GSE96804,GSE30528 and GSE30529 datasets(including 60 DKD patients and 45 normal samples)identified 111 differentially expressed genes in DKD.Network pharmacology analysis obtained 161 intersecting genes between the target genes of Euonymus alatus and DKD,including the key core target genes SRC,EGFR,and AKT1.The core active ingredients of Euonymus alatus were quercetin,kaempferol,diosmetin,and naringenin,which were associated with responses to xenobiotic stimulionus and protein phosphorylation and regulated EGFR tyrosine kinase inhibitor resistance pathways.Molecular docking suggested good binding activities of the core active components of Euonymus alatus with the core targets.In db/db mouse models of DKD,treatment with Euonymus alatus obviously ameliorated kidney pathologies,significantly inhibited renal expressions of SRC,EGFR and AKT1,and delayed the progression of DKD.Conclusion Euonymus alatus contains multiple active ingredients such as quercetin,kakaferol,diosmetin,naringenin,which regulate the expressions of SRC,EGFR,and AKT1 to affect the EGFR tyrosine kinase inhibitor resistance signaling pathway to delay the progression of DKD.
10.The effect of umbilical cord stem cell exosomes on the proliferation of dermal papilla cells
Qing LUO ; Jinjin HUANG ; Tingting REN ; Ruihua ZHOU ; Donghua XU ; Zhenhua WANG ; Guoying WANG
The Journal of Practical Medicine 2024;40(20):2828-2834
Objective We tried to investigate the effects of human umbilical cord mesenchymal stem cell exosomes(hUCMSC-Exos)on the proliferation of human dermal papilla cells(HDPCs)and the mechanism of hUCMSC-Exos promoting hair growth.Methods HDPCs were isolated using two-step enzymatic method and cul-tured in vitro.Human umbilical cord mesenchymal stem cells(hUC-MSCs)were cultured.Cell culture supernatant was collected,and exosomes were isolated and extracted using high-speed centrifugation.Electron microscopy,particle size,and surface marker identification were performed on them.Dihydrotestosterone(DHT)induces HDPCs and establishment of an androgenic alopecia cell model.Co-culture hUCMSC-Exos with HDPCs,cell proliferation experiment(EdU)was used to detect the relative activity of induced HDPCs.Real-time qPCR was used to detect the expression level of alkaline phosphatase(ALP),and Western blot was used to detect β-catenin,Wnt10b,GSK-3β expression at the protein level.Results The obtained primary HDPCs,hUC-MSCs,and hUCMSC-Exos were all conformed to the characteristics of dermal papilla cells,mesenchymal stem cells,and exosomes.The num-ber of EdU positive cells significantly increased,and exosomes could effectively promote the proliferation of HDPCs(P<0.05),enhance the vitality of HDPCs and alleviate the damage caused by DHT(P<0.05).Real-time qPCR showed that exosomes could enhance the expression level of ALP gene(P<0.05)and hair follicle induction ability.Western Blot confirmation β-catenin,Wnt10b,GSK-3β were differences in expression at the protein level(P<0.05).Conclusions HUCMSC-Exos could promote DHT induced proliferation of HDPCs,enhance their hair follicle regeneration and repair ability,and its mechanism may be related to the activation of Wnt/β-catenin signaling pathway.

Result Analysis
Print
Save
E-mail