1.Clinical Characteristics of Adult Acute Myeloid Leukemia Patients with NUP98::HOXA9 Fusion Gene.
Hai-Xia CAO ; Ya-Min WU ; Shu-Juan WANG ; Zhi-Dan CHEN ; Jing-Han HU ; Xiao-Qian GENG ; Fang WANG ; Ling SUN ; Zhong-Xing JIANG ; Zhi-Lei BIAN
Journal of Experimental Hematology 2025;33(5):1241-1247
OBJECTIVE:
To investigate the clinical characteristics, treatment and prognosis of adult AML patients with NUP98::HOXA9 fusion gene.
METHODS:
From May 2017 to October 2023, among 2 113 AML patients who visited the Hematology Department of our hospital, patients with NUP98 rearrangements were screened. The clinical characteristics, chromosome karyotypes, immunophenotypes, gene mutations, treatment efficacy and prognosis of the patients with NUP98::HOXA9 positive were analyzed.
RESULTS:
Among the 2 113 AML patients, there were 18 cases with NUP98 rearrangement, including 14 NUP98::HOXA9 positive cases, with a detection rate of 0.66% (14/2 113). The median age of the NUP98::HOXA9 positive patients was 42.5 (23-64) years old. The most common chromosome karyotype was t(7; 11)(p15; p15). The immunophenotypes of all patients expressed CD13, CD33, CD117 and CD38, and most patients expressed CD34 and cMPO, while only a few expressed HLA-DR. Second-generation sequencing (NGS) was performed to detect genetic mutations associated with leukemia in all 14 patients, and the genes exhibiting a high frequency of mutation were WT1 (10/14), TET2 (7/14), and FLT3-ITD (6/14). Additionally, mutations were also observed in KRAS/NRAS, IDH1, and KIT. Of the 13 patients who received treatment, 9 achieved complete remission (CR), and all 3 patients who received azacytidine(AZA)+ venetoclax (VEN) regimen achieved CR after the first course of treatment. Within this cohort, 6 patients were classified as relapsed/refractory (6/13). 4 patients underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT), of which two achieved long-term survival. The median follow-up time was 12 (2.1-65.0) months, while the median overall survival (OS) and relapse-free survival (RFS) were recorded as 11.4 months and 9.6 months, respectively.
CONCLUSION
The most common type of NUP98 rearrangement in adults AML patients is NUP98::HOXA9 , which is often accompanied by somatic mutations in WT1, TET2, and FLT3-ITD. These patients are prone to relapse, have short survival time, and generally face poor prognoses. Hopefully, utilization of the AZA+VEN regimen is anticipated to enhance the rate of induced remission in the patients, and some patients may prolong their survival through allo-HSCT. However, more effective treatment methods are still needed to improve the overall prognosis of these patients.
Humans
;
Adult
;
Leukemia, Myeloid, Acute/genetics*
;
Middle Aged
;
Prognosis
;
Nuclear Pore Complex Proteins/genetics*
;
Oncogene Proteins, Fusion/genetics*
;
Mutation
;
Male
;
Female
;
Young Adult
;
Homeodomain Proteins/genetics*
2.Liang-Ge-San Decoction Ameliorates Acute Respiratory Distress Syndrome via Suppressing p38MAPK-NF-κ B Signaling Pathway.
Quan LI ; Juan CHEN ; Meng-Meng WANG ; Li-Ping CAO ; Wei ZHANG ; Zhi-Zhou YANG ; Yi REN ; Jing FENG ; Xiao-Qin HAN ; Shi-Nan NIE ; Zhao-Rui SUN
Chinese journal of integrative medicine 2025;31(7):613-623
OBJECTIVE:
To explore the potential effects and mechanisms of Liang-Ge-San (LGS) for the treatment of acute respiratory distress syndrome (ARDS) through network pharmacology analysis and to verify LGS activity through biological experiments.
METHODS:
The key ingredients of LGS and related targets were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. ARDS-related targets were selected from GeneCards and DisGeNET databases. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed using the Metascape Database. Molecular docking analysis was used to confirm the binding affinity of the core compounds with key therapeutic targets. Finally, the effects of LGS on key signaling pathways and biological processes were determined by in vitro and in vivo experiments.
RESULTS:
A total of LGS-related targets and 496 ARDS-related targets were obtained from the databases. Network pharmacological analysis suggested that LGS could treat ARDS based on the following information: LGS ingredients luteolin, wogonin, and baicalein may be potential candidate agents. Mitogen-activated protein kinase 14 (MAPK14), recombinant V-Rel reticuloendotheliosis viral oncogene homolog A (RELA), and tumor necrosis factor alpha (TNF-α) may be potential therapeutic targets. Reactive oxygen species metabolic process and the apoptotic signaling pathway were the main biological processes. The p38MAPK/NF-κ B signaling pathway might be the key signaling pathway activated by LGS against ARDS. Moreover, molecular docking demonstrated that luteolin, wogonin, and baicalein had a good binding affinity with MAPK14, RELA, and TNF α. In vitro experiments, LGS inhibited the expression and entry of p38 and p65 into the nucleation in human bronchial epithelial cells (HBE) cells induced by LPS, inhibited the inflammatory response and oxidative stress response, and inhibited HBE cell apoptosis (P<0.05 or P<0.01). In vivo experiments, LGS improved lung injury caused by ligation and puncture, reduced inflammatory responses, and inhibited the activation of p38MAPK and p65 (P<0.05 or P<0.01).
CONCLUSION
LGS could reduce reactive oxygen species and inflammatory cytokine production by inhibiting p38MAPK/NF-κ B signaling pathway, thus reducing apoptosis and attenuating ARDS.
Drugs, Chinese Herbal/pharmacology*
;
Respiratory Distress Syndrome/enzymology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
NF-kappa B/metabolism*
;
Animals
;
Signal Transduction/drug effects*
;
Molecular Docking Simulation
;
Humans
;
Male
;
Network Pharmacology
;
Apoptosis/drug effects*
;
Mice
3.BTVT ameliorates offspring blood-brain barrier damage induced by prenatal and lactational neodymium oxide exposure via the gut-brain axis.
Xiaoyan DU ; Xiaocheng GAO ; Jing CAO ; Xin ZHAO ; Zhi HUO ; Shaoqing ZHAO ; Qingqing LIANG ; Lei GAO ; Yang DENG
Journal of Central South University(Medical Sciences) 2025;50(4):615-624
OBJECTIVES:
Exposure to rare earth elements (REEs) has been linked to various systemic diseases, but their impact on the offspring blood-brain barrier (BBB) via the gut-brain axis remains unclear. This study aims to investigate the effects of maternal exposure to neodymium oxide (Nd2O3) on the BBB integrity of offspring rats, and to evaluate the potential protective role of bifidobacterium tetrad viable tablets (BTVT) against Nd2O3-induced intestinal and BBB damage.
METHODS:
Healthy adult SD rats were mated at a 1:1 male-to-female ratio, with the day of vaginal plug detection marked as gestational day 0. A total of 60 pregnant rats were randomly assigned to the following groups: Control, 50 mg/(kg·d) Nd2O3, 100 mg/(kg·d) Nd2O3, 200 mg/(kg·d) Nd2O3, and 200 mg/(kg·d) Nd2O3 + BTVT group. Treatments were administered by daily oral gavage throughout pregnancy and lactation. On postnatal day 21 (weaning), offspring feces, brain, and colon tissues were collected. Hematoxylin and eosin (HE) staining was used to assess structural changes in brain and intestinal tissues. Short-chain fatty acids (SCFAs) in feces were quantified by gas chromatography-mass spectrometry (GC-MS). Evans Blue (EB) dye extravasation assessed BBB permeability. Gene and protein expression levels of tight junction proteins occludin and zonula occludens-1 (ZO-1) were measured by reverse transcription PCR (RT-PCR) and Western blotting (WB), respectively. Neodymium levels in brain tissue were determined via inductively coupled plasma mass spectrometry (ICP-MS).
RESULTS:
HE staining revealed that maternal Nd2O3 exposure caused mucosal edema, increased submucosal spacing, and lymphocyte infiltration in offspring colon, as well as neuronal degeneration and vacuolization in brain tissue. BTVT intervention alleviated these changes. GC-MS analysis showed that levels of acetic acid, propionic acid, butyric acid, and isobutyric acid significantly decreased, while valeric acid and isovaleric acid increased in offspring of Nd2O3-exposed mothers (P<0.05). BTVT significantly restored levels of acetic, propionic, and isobutyric acids and reduced valeric acid content (P<0.05). EB permeability was significantly elevated in Nd2O3-exposed offspring brains (P<0.05), but reduced with BTVT treatment (P<0.05). RT-PCR and WB showed downregulation of occludin and ZO-1 expression following Nd2O3 exposure (P<0.05), which was reversed by BTVT (P<0.05). ICP-MS results indicated significantly increased brain neodymium levels in offspring from all Nd2O3-exposed groups (P<0.05), while BTVT significantly reduced neodymium accumulation compared to the 200 mg/(kg·d) Nd2O3 group (P<0.05).
CONCLUSIONS
Maternal exposure to Nd2O3 during pregnancy and lactation disrupts intestinal health and BBB integrity in offspring, elevates brain neodymium accumulation, and induces neuronal degeneration. BTVT effectively mitigates Nd2O3-induced intestinal and BBB damage in offspring, potentially through modulation of the gut-brain axis.
Animals
;
Female
;
Blood-Brain Barrier/pathology*
;
Pregnancy
;
Rats, Sprague-Dawley
;
Rats
;
Male
;
Neodymium/toxicity*
;
Prenatal Exposure Delayed Effects/prevention & control*
;
Lactation
;
Maternal Exposure/adverse effects*
;
Brain
4.Anterior Cingulate Cortex Contributes to the Hyperlocomotion under Nitrogen Narcosis.
Bin PENG ; Xiao-Bo WU ; Zhi-Jun ZHANG ; De-Li CAO ; Lin-Xia ZHAO ; Hao WU ; Yong-Jing GAO
Neuroscience Bulletin 2025;41(5):775-789
Nitrogen narcosis is a neurological syndrome that manifests when humans or animals encounter hyperbaric nitrogen, resulting in a range of motor, emotional, and cognitive abnormalities. The anterior cingulate cortex (ACC) is known for its significant involvement in regulating motivation, cognition, and action. However, its specific contribution to nitrogen narcosis-induced hyperlocomotion and the underlying mechanisms remain poorly understood. Here we report that exposure to hyperbaric nitrogen notably increased the locomotor activity of mice in a pressure-dependent manner. Concurrently, this exposure induced heightened activation among neurons in both the ACC and dorsal medial striatum (DMS). Notably, chemogenetic inhibition of ACC neurons effectively suppressed hyperlocomotion. Conversely, chemogenetic excitation lowered the hyperbaric pressure threshold required to induce hyperlocomotion. Moreover, both chemogenetic inhibition and genetic ablation of activity-dependent neurons within the ACC reduced the hyperlocomotion. Further investigation revealed that ACC neurons project to the DMS, and chemogenetic inhibition of ACC-DMS projections resulted in a reduction in hyperlocomotion. Finally, nitrogen narcosis led to an increase in local field potentials in the theta frequency band and a decrease in the alpha frequency band in both the ACC and DMS. These results collectively suggest that excitatory neurons within the ACC, along with their projections to the DMS, play a pivotal role in regulating the hyperlocomotion induced by exposure to hyperbaric nitrogen.
Animals
;
Gyrus Cinguli/drug effects*
;
Male
;
Mice, Inbred C57BL
;
Locomotion/drug effects*
;
Neurons/drug effects*
;
Mice
;
Nitrogen/toxicity*
;
Inert Gas Narcosis/physiopathology*
;
Corpus Striatum/physiopathology*
5.Correlation between Combined Urinary Metal Exposure and Grip Strength under Three Statistical Models: A Cross-sectional Study in Rural Guangxi
Jian Yu LIANG ; Hui Jia RONG ; Xiu Xue WANG ; Sheng Jian CAI ; Dong Li QIN ; Mei Qiu LIU ; Xu TANG ; Ting Xiao MO ; Fei Yan WEI ; Xia Yin LIN ; Xiang Shen HUANG ; Yu Ting LUO ; Yu Ruo GOU ; Jing Jie CAO ; Wu Chu HUANG ; Fu Yu LU ; Jian QIN ; Yong Zhi ZHANG
Biomedical and Environmental Sciences 2024;37(1):3-18
Objective This study aimed to investigate the potential relationship between urinary metals copper (Cu), arsenic (As), strontium (Sr), barium (Ba), iron (Fe), lead (Pb) and manganese (Mn) and grip strength. Methods We used linear regression models, quantile g-computation and Bayesian kernel machine regression (BKMR) to assess the relationship between metals and grip strength.Results In the multimetal linear regression, Cu (β=-2.119), As (β=-1.318), Sr (β=-2.480), Ba (β=0.781), Fe (β= 1.130) and Mn (β=-0.404) were significantly correlated with grip strength (P < 0.05). The results of the quantile g-computation showed that the risk of occurrence of grip strength reduction was -1.007 (95% confidence interval:-1.362, -0.652; P < 0.001) when each quartile of the mixture of the seven metals was increased. Bayesian kernel function regression model analysis showed that mixtures of the seven metals had a negative overall effect on grip strength, with Cu, As and Sr being negatively associated with grip strength levels. In the total population, potential interactions were observed between As and Mn and between Cu and Mn (Pinteractions of 0.003 and 0.018, respectively).Conclusion In summary, this study suggests that combined exposure to metal mixtures is negatively associated with grip strength. Cu, Sr and As were negatively correlated with grip strength levels, and there were potential interactions between As and Mn and between Cu and Mn.
6.The Development of Chinese Herbal Formulae for Non-severe COVID-19 Based on Artificial Intelligence Technology and Investigation of Its Action Mechanisms
Wenting HUANG ; Liansheng QIAO ; Di YAN ; Tengwen LIU ; Hongmei CAO ; Hongyan GUO ; Zhi ZHANG ; Jing CHENG ; Lan XIE ; Qingquan LIU
Journal of Traditional Chinese Medicine 2024;65(1):103-112
ObjectiveTo develop traditional Chinese medicine (TCM) formulae for the treatment of nonsevere coronavirus disease 2019 (COVID-19) and to explore its anti-inflammatory mechanism. MethodsThe dysregulated signaling pathways were determined in macrophages from bronchoalveolar lavage fluid of COVID-19 patients and in lung epithelial cells infected with SARS-CoV-2 in vitro based on transcriptome analysis. A total of 102 TCM formulae for the clinical treatment of nonsevere COVID-19 were collected through literature. The pathway-reversing rates of these formulae in macrophages and lung epithelial cells were evaluated based on signature signaling pathways, and the basic formula was determined in conjunction with TCM theory. The commonly used Chinese materia medica for nonsevere COVID-19 were summarized from the 102 TCM formulae as abovementioned. And together with the screening results from the Pharmacopoeia of the People's Republic of China, a “Chinese materia medica pool” was esta-blished for the development of TCM formulae for COVID-19. The regulatory effects of each herb on signaling pathways were obtained based on targeted transcriptome analysis. Oriented at reversing dysregulated signaling pathways of COVID-19, the calculation was carried out, and the artificial intelligent methods for compositing formulae, that are exhaustive method and parallel computing, were used to obtain candidate compound formulas. Finally, with reference to professional experience, an innovative formula for the treatment of nonsevere COVID-19 was developed. The ethanol extract of the formula was evaluated for its anti-inflammatory effects by detecting the mRNA expression of interleukin 1b (Il1b), C-X-C motif chemokine ligand 2 (Cxcl2), C-X-C motif chemokine ligand 10 (Cxcl10), C-C motif chemokine ligand 2 (Ccl2), nitric oxide synthase 2 (Nos2), and prostaglandin-endoperoxide synthase 2 (Ptgs2) using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in RAW264.7 cells treated with lipopolysaccharide (LPS). ResultsIn macrophages and lung epithelial cells, 34 dysregulated signaling pathways associated with COVID-19 were identified respectively. The effects of the 102 formulae for clinical treatment of nonsevere COVID-19 were evaluated based on the dysregulated signaling pathways and targeted transcriptome, and the result showed that Yinqiao Powder and Pingwei Powder (银翘散合平胃散, YQPWP) ranked first, reversing 91.18% of the dysregulated signaling pathways in macrophages and 100% of the dysregulated signaling pathways in lung epithelial cells. Additionally, YQPWP had the function of scattering wind and clearing heat, resolving toxins and removing dampness in accordance with the pathogenesis of wind-heat with dampness in COVID-19. It was selected as the basic formula, and was further modified and optimized to develop an innovative fomula Qiaobang Zhupi Yin (翘蒡术皮饮, QBZPY) based on expert experience and artificial intelligence in composing formulae. QBZPY can reverse all the dysregulated signaling pathways associated with COVID-19 in macrophages and lung epithelial cells, with the reversing rates of 100%. The chief medicinal of QBZPY, including Lianqiao (Fructus Forsythiae), Xixiancao (Herba Siegesbeckiae) and Niubangzi (Fructus Arctii), can down-regulate multiple signaling pathways related with virus infection, immune response, and epithelial damage. RT-qPCR results indicated that compared with the model group, the QBZPY group down-regulated the mRNA expression of Il1b, tumor necrosis factor (Tnf), Cxcl2, Cxcl10, Ccl2, Nos2 and Ptgs2 induced by LPS in RAW264.7 cells (P<0.05 or P<0.01). ConclusionBased on targeted transcriptome analysis, expert experience in TCM and artificial intelligence, QBZPY has been developed for the treatment of nonsevere COVID-19. The ethanol extract of QBZPY has been found to inhibit mRNA expression of several pro-inflammatory genes in a cellular inflammation model.
7.Network pharmacology and molecular docking to explore the mechanism of antiplatelet drugs in the treatment of acute lung injury
Jing NIU ; Qian XIANG ; Zhi-Yan LIU ; Zhe WANG ; Lin-Yu CAO
The Chinese Journal of Clinical Pharmacology 2024;40(6):914-917
Objective To explore the mechanism of antiplatelet drugs in the treatment of acute lung injury based on the strategy of network pharmacology.Methods The targets of antiplatelet drugs were predicted by SwissTargetPrediction platform,and the related targets of acute lung injury were obtained by GeneCards and OMIM databases.The protein interaction network was constructed through the STRING platform.The CytoHubba and MCODE plug-ins in Cytoscape software were used to screen out the core targets and highly connected target clusters for the treatment of acute lung injury.The DAVID database was used to analyze the gene ontology(GO)bioprocess and Kyoto encyclopedia of genes and genomes(KEGG)signaling pathway enrichment of the core targets.Finally,AutoDockTools software was used for molecular docking verification.Results A total of 20 core targets for antiplatelet drugs in the treatment of acute lung injury were screened,among which the top three core targets were proto-oncogene tyrosine-protein kinase(SRC),phosphoinositide-3-kinase regulatory subunit 1(PIK3R1)and signal transducer and activator of transcription 3(STAT3).Antiplatelet drugs may play a role in the treatment of acute lung injury by regulating epidermal growth factor receptor(ErbB)signaling pathway,positive programmed death receptor-1(PD-1)/programmed death receptor ligand-1(PD-L1)signaling pathway and Janus activated kinase/signal transducer and activator of transcription(JAK-STAT)signaling pathway.Molecular docking results further showed that antiplatelet drugs could bind well to core targets.Conclusion This study elucidated the possible mechanism of antiplatelet drugs in the treatment of acute lung injury from a systematic and holistic perspective,and provided new ideas for further study of the pharmacological mechanism of antiplatelet drugs in the treatment of acute lung injury.
8.Failures and successes learned from 160 years of echinococcosis control and countermeasures in China
Chuan-Chuan WU ; Zhuang-Zhi ZHANG ; Jun LI ; Wen-Jing QI ; Jian-Ping CAO ; Can-Jun ZHENG ; Wen-Bao ZHANG
Chinese Journal of Zoonoses 2024;40(5):464-470
The transmission cycle of echinococcosis was established in 1853.More than 160 years have elapsed since Iceland initiated control measures to break the transmission cycle of echinococcosis in 1863.Control plans have been implemented in more than a dozen countries/territories,and lessons have been learned from failures as well as successes.In this review,we fo-cus on the failure experiences,which have also promoted successes in the control of cystic echinococcosis(caused by the para-site Echinococcus granulosus)in regions including Iceland,New Zealand,Uruguay,Wales(England),Turkana(Kenya),and Sardinia(Italy).The causes of the failures were analyzed,and the effects of health education,dog deworming,and con-trol measures for infected animal slaughter on echinococcosis control are comprehensively summarized.However,no suc-cessful experience has been reported in the control of alveolar echinococcosis(caused by the parasite Echinococcus multilocu-laris).On the basis of the biological characteristics of E.mul-tilocularis parasitization in dogs for a duration of 30 days and larvae parasitization in rodents,the fundamental measure for controlling alveolar echinococcosis is administration of monthly deworming treatments to dogs in high prevalence areas.
9.Effects of sRNA 00085 on the environmental fitness of Listeria monocytogenes
Jing DENG ; Ji ZHI ; Zi-Qiu FAN ; Xue-Hui ZHAO ; Ya-Li SONG ; Hui-Tian GOU ; Yan-Quan WEI ; Qing CAO
Chinese Journal of Zoonoses 2024;40(7):620-627
The purpose of this study was to investigate the regulatory effects of biofilm associated non-coding small RNA(sRNA)00085 on the survival and environmental fitness of Listeria monocytogenes.Homologous recombination technology was used to construct a deletion mutant strain(△sRNA 00085)and a complementary strain(C △sRNA 00085)of the sRNA00085 target gene.The differences in biological characteristics were compared among the standard strain,△sRNA 00085,and C△sRNA 00085.The deletion of sRNA00085 led to a significant decrease in biofilm formation capacity and sensitivity to several antibiotics,including penicillin,piperacillin,doxycycline,tetracycline,vancomycin,and cotrimoxazole.However,only the minimum inhibitory concentration(MIC)of tetracycline exhibited a significant decrease in △sRNA00085.Meanwhile,the decreased biofilm formation and antibiotic resistance of the sRNA00085 mutant were restored in the C△sRNA00085 strain.Furthermore,we investigated the transcription levels of tetracycline resistance-related genes in L.monocytogenes.Down-regu-lated transcription of the tetS gene but no significant difference in transcription of the tetA gene were observed in △sRNA 00085 compared with the standard strain and C△sRNA00085.Moreover,the elimination of sRNA00085 did not affect bacterial growth ability or sensitivity to disinfectants.These findings highlight that sRNA00085 plays an important role in the environ-mental adaptability of L.monocytogenes by affecting bacterial biofilm formation and resistance.
10.Construction and biological characterization of lmo2363 gene deletion strain of Listeria monocytogenes
Ji ZHI ; Qing CAO ; Xuehui ZHAO ; Haohao ZHANG ; Ziqiu FAN ; Yonghui MA ; Jing DENG ; Zengwen HE ; Jinrui MA ; Kunzhong ZHANG ; Qian CHONG ; Caixia WANG ; Huiwen XUE ; Huitian GOU
Chinese Journal of Veterinary Science 2024;44(9):1923-1929,1956
This study aims to investigate the function of lmo2363 gene in stress resistance of Liste-ria monocytogenes strain LM83-1.In this study,the lmo2363 gene deletion strain and complement-ation strain of Listeria monocytogenes were constructed using overlapping extended PCR and ho-mologous recombination techniques,and the growth ability,stress survival rate and biofilm forma-tion ability of wild,deletion strain and complementation strain were compared under different stress environments.lmo2363 gene deletion strain and complementation strain of Listeria monocy-togenes were successfully constructed in this experiment.The growth curves showed that the growth capacity of the deletion strain was weaker than the wild strain LM83-1 under 4 ℃,7%NaCl,10%NaCl,3.5%ethanol,4.0%ethanol and pH5 stress(P<0.001).The results of stress survival test showed that the survival rate of the deletion strain was significantly lower than the wild strain after 1 h treatment with pH3 and 10 mmol/L H2 O2 stress(P<0.010).The biofilm forming ability of the deletion strain was decreased compared with that of the wild strain(P<0.050).This study confirmed that lmo2363 gene mediated the adaptation of LM to low temperature,high osmotic pressure,ethanol and acid stress environment and affected the formation of LM bio-film.This study laid a foundation for further exploring the function of lmo2363 gene in the stress resistance process of Listeria monocytogenes.

Result Analysis
Print
Save
E-mail