1.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
2.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
3.Advances in Diabetic Peripheral Neuropathy Treatment by Traditional Chinese Medicine Based on Cellular Senescence: A Review
Qixian MA ; Shiyu HAN ; Hui HUANG ; Jing TIAN ; Xu HAN ; Qingguang CHEN ; Hao LU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):322-330
Diabetic Peripheral Neuropathy (DPN) is one of the most common and harmful complications of type 2 diabetes. DPN's pathogenesis include high blood sugar-induced oxidative stress, inflammation, and mitochondrial dysfunction. These factors are combined to damage nerve fibers, leading to sensory issues, pain, and numbness. Through a coordinated effect, these factors trigger nerve fiber damage and lead to sensory abnormalities, pain and numbness in limbs, and other symptoms, seriously restricting patients' activities of daily living and mobility. Recent research highlights that cellular senescence plays a critical role in DPN. Cellular senescence is manifested by the loss of cell proliferation ability, and further aggravates nerve damage via oxidative stress, mitochondrial dysfunction, autophagy impairment, inflammatory reaction, and other mechanisms, accelerating DPN occurrence and progression. In terms of medical treatment, current methods focus on blood sugar control, pain relief medicine, and microcirculation improvement, while no therapy has been developed based on cellular senescence. In contrast, traditional Chinese medicine (TCM) shows a unique advantage in DPN prevention and treatment via cellular senescence modulation. TCM emphasizes a holistic approach, as well as syndrome differentiation and treatment, effective in anti-aging and nerve damage repair. Recent studies show that TCM active ingredients, including puerarin, ginsenosides, and berberine, can reduce inflammation, oxidative stress, and apoptosis via signaling pathway regulation, thereby slowing cellular senescence to alleviate nerve damage. Furthermore, TCM compounds such as Buyang Huanwutang, Taohong Siwutang, and Huangqi Guizhi Wuwutang exert synergistic effects on cellular senescence-related pathways to improve nerve health and reduce DPN clinical symptoms. Therefore, this paper reviews the literature related to the interaction between cellular senescence and DPN from the perspective of cellular senescence, summarizing the mechanism of DPN and TCM intervention strategies.
4.Construction of a community-family management model for older adults with mild cognitive impairment
Junli CHEN ; Han ZHANG ; Yefan ZHANG ; Yanqiu ZHANG ; Runguo GAO ; Qianqian GAO ; Weiqin CAI ; Haiyan LI ; Lihong JI ; Zhiwei DONG ; Qi JING
Chinese Journal of Rehabilitation Theory and Practice 2026;32(1):90-100
ObjectiveTo develop a community-family management model for older adults with mild cognitive impairment (MCI) and to formulate detailed application specifications, and to fully leverage the initiative of communities and families under limited resource conditions, for achieving community-based early detection and early intervention for older adults with MCI. MethodsA systematic literature review was conducted to identify pertinent publications. Corpus-based research methodologies were employed to extract, refine, integrate and synthesize management elements, thereby establishing the specific content and service processes for each stage of the management model. Utilizing the 5W2H analytical framework, essential elements such as management stakeholders, target populations, content and methods for each stage were delineated. The model and its application guidelines were finalized through expert consultation and demonstration. ResultsAn expert evaluation of the management model yielded mean scores of 4.84, 4.32 and 4.84 for acceptability, feasibility and systematicity, respectively. By integrating the identified core elements with expert ratings and feedback, the final iteration of the community-family management model for older adults with MCI was formulated. This model comprised of five stages: screening and identification, comprehensive assessment, intervention planning, monitoring and referral pathways to ensure implementation, and enhanced support for communities, family members and caregivers. Additionally, it included 18 specific application guidelines. ConclusionThe proposed management model may theoretically help delay cognitive decline, improve cognitive function and potentially promote reversal from MCI to normal cognition. It may also enhance the awareness and coping capacity of older adults and their families, strengthen community healthcare professionals' ability to early identify and manage MCI.
5.Exon Sequencing of HNF1β in Chinese Patients with Early-Onset Diabetes
Siqian GONG ; Hong LIAN ; Yating LI ; Xiaoling CAI ; Wei LIU ; Yingying LUO ; Meng LI ; Si-min ZHANG ; Rui ZHANG ; Lingli ZHOU ; Yu ZHU ; Qian REN ; Xiuying ZHANG ; Jing CHEN ; Jing WU ; Xianghai ZHOU ; Xirui WANG ; Xueyao HAN ; Linong JI
Diabetes & Metabolism Journal 2025;49(2):321-330
Background:
Maturity-onset diabetes of the young (MODY) due to variants of hepatocyte nuclear factor 1-beta (HNF1β) (MODY5) has not been well studied in the Chinese population. This study aimed to estimate its prevalence and evaluate the application of a clinical screening method (Faguer score) in Chinese early-onset diabetes (EOD) patients.
Methods:
Among 679 EOD patients clinically diagnosed with type 2 diabetes mellitus (age at diagnosis ≤40 years), the exons of HNF1β were sequenced. Functional impact of rare variants was evaluated using a dual-luciferase reporter system. Faguer scores ≥8 prompted multiplex ligation-dependent probe amplification (MLPA) for large deletions. Pathogenicity of HNF1β variants was assessed following the American College of Medical Genetics and Genomics (ACMG) guidelines.
Results:
Two rare HNF1β missense mutations (E105K and G454R) were identified by sequencing in five patients, showing functional impact in vitro. Another patient was found to have a whole-gene deletion by MLPA in 22 patients with the Faguer score above 8. Following ACMG guidelines, six patients carrying pathogenic or likely pathogenic variant were diagnosed with MODY5. The estimated prevalence of MODY5 in Chinese EOD patients was approximately 0.9% or higher.
Conclusion
MODY5 is not uncommon in China. The Faguer score is helpful in deciding whether to perform MLPA analysis on patients with negative sequencing results.
6.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
7.Synthetic MRI Combined With Clinicopathological Characteristics for Pretreatment Prediction of Chemoradiotherapy Response in Advanced Nasopharyngeal Carcinoma
Siyu CHEN ; Jiankun DAI ; Jing ZHAO ; Shuang HAN ; Xiaojun ZHANG ; Jun CHANG ; Donghui JIANG ; Heng ZHANG ; Peng WANG ; Shudong HU
Korean Journal of Radiology 2025;26(2):135-145
Objective:
To explore the feasibility of synthetic magnetic resonance imaging (syMRI) combined with clinicopathological characteristics for the pre-treatment prediction of chemoradiotherapy (CRT) response in advanced nasopharyngeal carcinoma (ANPC).
Materials and Methods:
Patients with ANPC treated with CRT between September 2020 and June 2022 were retrospectively enrolled and categorized into response group (RG, n = 95) and non RGs (NRG, n = 32) based on the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The quantitative parameters from pre-treatment syMRI (longitudinal [T1] and transverse [T2] relaxation times and proton density [PD]), diffusion-weighted imaging (apparent diffusion coefficient [ADC]), and clinicopathological characteristics were compared between RG and NRG. Logistic regression analysis was applied to identify parameters independently associated with CRT response and to construct a multivariable model. The areas under the receiveroperating characteristic curve (AUC) for various diagnostic approaches were compared using the DeLong test.
Results:
The T1, T2, and PD values in the NRG were significantly lower than those in the RG (all P < 0.05), whereas no significant difference was observed in the ADC values between these two groups. Clinicopathological characteristics (Epstein–Barr virus [EBV]-DNA level, lymph node extranodal extension, clinical stage, and Ki-67 expression) exhibited significant differences between the two groups. Logistic regression analysis showed that T1, PD, EBV-DNA level, clinical stage, and Ki-67 expression had significant independent relationships with CRT response (all P < 0.05). The multivariable model incorporating these five variables yielded AUC, sensitivity, and specificity values of 0.974, 93.8% (30/32), and 91.6% (87/95), respectively.
Conclusion
SyMRI may be used for the pretreatment prediction of CRT response in ANPC. The multivariable model incorporating syMRI quantitative parameters and clinicopathological characteristics, which were independently associated with CRT response, may be a new tool for the pretreatment prediction of CRT response.
8.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
Objective:
Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity.
Materials and Methods:
This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC).
Results:
The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85.
Conclusion
Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification.
9.Development of Zinc-Containing Chitosan/Gelatin Coatings with Immunomodulatory Effect for Soft Tissue Sealing around Dental Implants
Jing HAN ; Jorine G. F. SANDERS ; Lea ANDRÉE ; Bart A. J. A. van OIRSCHOT ; Adelina S. PLACHOKOVA ; Jeroen J. J. P. van den BEUCKEN ; Sander C. G. LEEUWENBURGH ; Fang YANG
Tissue Engineering and Regenerative Medicine 2025;22(1):57-75
BACKGROUND:
Soft tissue integration (STI) around dental implant abutments is a prerequisite to prevent bacterial invasion and achieve successful dental implant rehabilitation. However, peri-implant STI is a major challenge after dental abutment placement due to alterations in the immune microenvironment upon surgical dental implant installation.
METHODS:
Based on known immunomodulatory effects of zinc, we herein deposited zinc/chitosan/gelatin (Zn/CS/Gel) coatings onto titanium substrates to study their effect on macrophages. First, we exposed macrophages to cell culture media containing different zinc ion (Zn2+) concentrations. Next, we explored the immunomodulatory effect of Zn/CS/Gel coatings prepared via facile electrophoretic deposition (EPD).
RESULTS:
We found that Zn2+ effectively altered the secretome by reducing the secretion of pro-inflammatory and enhancing pro-regenerative cytokine secretion, particularly at a Zn2+ supplementation of approximately 37.5 μM. Zn/CS/Gel coatings released Zn2+ in a concentration range which effectively stimulated pro-regenerative macrophage polarization as demonstrated by M2 macrophage polarization. Additionally, the impact of these Zn2+-exposed macrophages on gingival fibroblasts incubated in conditioned medium showed stimulated adhesion, proliferation, and collagen secretion.
CONCLUSION
Our promising results suggest that controlled release of Zn2+ from Zn/CS/Gel coatings could be applied to immunomodulate peri-implant STI, and to enhance dental implant survival.
10.Mesenchymal Stem Cell-Derived Extracellular Vesicles Carrying Circ-Tulp4 Attenuate Diabetes Mellitus with Nonalcoholic Fatty Liver Disease by Inhibiting Cell Pyroptosis through the HNRNPC/ABHD6 Axis
Jing-Jing HAN ; Jing LI ; Dong-Hui HUANG
Tissue Engineering and Regenerative Medicine 2025;22(1):23-41
BACKGROUND:
Diabetes mellitus with nonalcoholic fatty liver disease (DM-NAFLD) represents a complex metabolic syndrome with significant clinical challenges. This study explores the therapeutic potential and underlying mechanisms of umbilical cord-derived mesenchymal stem cells (UCMSCs)-derived extracellular vesicles (EVs) in DM-NAFLD.
METHODS:
UCMSCs-EVs were isolated and characterized. DM-NAFLD mouse model was developed through highenergy diet and streptozotocin injection. Additionally, primary mouse hepatocytes were exposed to high glucose to simulate cellular conditions. Hepatic tissue damage, body weight changes, lipid levels, glucose and insulin homeostasis, and hepatic lipid accumulation were evaluated. The interaction between UCMSCs-EVs and hepatocytes was assessed, focusing on the localization and function of circ-Tulp4. The study also investigated the expression of circularRNA TUBlike protein 4 (circ-Tulp4), heterogeneous nuclear ribonucleoprotein C (HNRNPC), abhydrolase domain containing 6 (ABHD6), cleaved Caspase-1, NLR family pyrin domain containing 3 (NLRP3) and cleaved N-terminal gasdermin D (GSDMD-N). The binding of circ-Tulp4 to lysine demethylase 6B (KDM6B) and the subsequent epigenetic regulation of ABHD6 by H3K27me3 were analyzed.
RESULTS:
Circ-Tulp4 was reduced, while HNRNPC and ABHD6 were elevated in DM-NAFLD models. UCMSCs-EVs attenuated hepatic steatosis and inhibited the NLRP3/cleaved Caspase-1/GSDMD-N pathway. EVs delivered circ-Tulp4 into hepatocytes, thereby restoring circ-Tulp4 expression. Elevated circ-Tulp4 enhanced the recruitment of H3K27me3 to the HNRNPC promoter through interaction with KDM6B, thus suppressing HNRNPC and ABHD6. Overexpression of HNRNPC or ABHD6 counteracted the protective effects of UCMSCs-EVs, exacerbating pyroptosis and hepatic steatosis in DM-NAFLD.
CONCLUSION
UCMSCs-EVs deliver circ-Tulp4 into hepatocytes, where circ-Tulp4 inhibits the HNRNPC/ABHD6 axis, thereby reducing pyroptosis and alleviating DM-NAFLD. These findings provide a novel therapeutic avenue for targeting DM-NAFLD through modulation of cell pyroptosis.

Result Analysis
Print
Save
E-mail