1.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
2.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
3.Qualitative and Quantitative Analysis of Chemical Constituents in Gualou Niubangtang by UPLC-Q-TOF-MS/MS and HPLC
Yiyi ZHANG ; Jing YANG ; Yuqing CHENG ; Huimin GAO ; Jin QIN ; Li YAO ; Xiyang DU ; Raorao LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):179-187
ObjectiveThis paper aims to clarify the material basis of Gualou Niubangtang and establish a quantitative analysis method for its main constituents, providing a reference for the overall quality control of this preparation. MethodsThe constituents in the formula were systematically characterized based on ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). Identification was performed by matching with the UNIFI 9.6 software and utilizing database platforms such as PubChem, ChemicalBook, and ChemSpider, combined with relevant literature reports. A quantitative analysis method for the seven main constituents in Gualou Niubangtang was established by using high performance liquid chromatography (HPLC). ResultsUPLC-Q-TOF-MS/MS analysis identified 155 constituents, including 69 flavonoids, 36 terpenoids, 23 phenylpropanoids, 8 phenylethanoid glycosides, and 19 other types of constituents. In the established quantitative analysis method, the seven main constituents showed good linearity within their respective linear ranges. The precision, repeatability, stability, and spike recovery all met the required standards. The results showed that the content ranges of geniposide, liquiritin, hesperidin, arctiin, baicalin, oroxylin A-7-O-β-D-glucuronide, and wogonoside in 15 batches of Gualou Niubangtang were 13.67-21.25, 1.20-7.64, 5.45-7.45, 22.97-33.51, 29.95-39.07, 2.58-4.80, and 6.56-9.31 mg·g-1, respectively. ConclusionThis study successfully characterizes and attributes multi-category constituents in Gualou Niubangtang, clarifying that its material basis is primarily composed of flavonoids, terpenoids, phenylethanoid glycosides, and phenylpropanoids. Furthermore, it enables the quantification of seven constituents within the formula. This work lays a foundation for research on the quality control, action mechanism, and clinical application of this formula.
4.Analysis of Potential Active Components and Molecular Mechanism of Baoxin Granules Regulating Ferroptosis in Treatment of Heart Failure
Yu CHEN ; Maolin WANG ; Yun WANG ; Yifan ZHAO ; Jing XU ; Hongwei WU ; Fang WANG ; Xiaoang ZHAO ; Youming LI ; Jixiang TIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):202-209
ObjectiveBased on ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS), network pharmacology, molecular docking and cell experiments, the active ingredients, possible targets and molecular mechanisms of Baoxin granules(BXG) regulating ferroptosis in the treatment of heart failure(HF) were explored. MethodsBXG intestinal absorption fluid was prepared by everted gut sac and the chemical composition contained therein were identified by UPLC-Q-TOF-MS. According to the obtained components, the potential targets of BXG were predicted, and the HF-related targets and related genes of ferroptosis were retrieved at the same time, and the intersecting targets were obtained by Venn diagram. In addition, the protein-protein interaction(PPI) network and the component-target network were constructed, and the core components and core targets were obtained by topological analysis. Then Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis were performed on the core targets, and molecular docking validation of the key targets and main components was carried out by AutoDockTools 1.5.7. H9c2 cells were used to establish a oxygen-glucose deprivation model, and the protective effect of BXG on cells was investigated by detecting cell viability, cell survival rate and reactive oxygen species(ROS) level. The protein expression levels of signal transducer and activator of transcription 3(STAT3), phosphorylation(p)-STAT3 and glutathione peroxidase 4(GPX4) were detected by Western blot to clarify the regulatory effect of BXG on ferroptosis. ResultsA total of 61 chemical components in BXG intestinal absorption fluid were identified, and network pharmacology obtained 27 potential targets of BXG for the treatment of HF, as well as 139 signaling pathways. BXG may act on core targets such as STAT3, tumor protein p53(TP53), epidermal growth factor receptor(EGFR), JUN and prostaglandin-endoperoxide synthase 2(PTGS2) through core components such as glabrolide and limonin, which in turn intervene in lipid and atherosclerosis, phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt), endocrine resistance and other signaling pathways to exert therapeutic effects on HF. Molecular docking showed that the docking results of multiple groups of targets and compounds were good. In vitro cell experiments showed that compared with the blank group, the cell viability and survival rate of the model group were significantly decreased, the level of ROS was significantly increased(P<0.01), the expression levels of STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 proteins were significantly decreased(P<0.05, P<0.01). Compared with the model group, the cell viability and survival rate of the BXG group were significantly increased, the ROS level was significantly decreased(P<0.01), the STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 protein levels were significantly increased(P<0.05, P<0.01). ConclusionBXG may inhibit the occurrence of ferroptosis by up-regulating the expression of STAT3 and GPX4, thus exerting a therapeutic effect on HF, and flavonoids may be the key components of this role.
5.Analysis of Potential Active Components and Molecular Mechanism of Baoxin Granules Regulating Ferroptosis in Treatment of Heart Failure
Yu CHEN ; Maolin WANG ; Yun WANG ; Yifan ZHAO ; Jing XU ; Hongwei WU ; Fang WANG ; Xiaoang ZHAO ; Youming LI ; Jixiang TIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):202-209
ObjectiveBased on ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS), network pharmacology, molecular docking and cell experiments, the active ingredients, possible targets and molecular mechanisms of Baoxin granules(BXG) regulating ferroptosis in the treatment of heart failure(HF) were explored. MethodsBXG intestinal absorption fluid was prepared by everted gut sac and the chemical composition contained therein were identified by UPLC-Q-TOF-MS. According to the obtained components, the potential targets of BXG were predicted, and the HF-related targets and related genes of ferroptosis were retrieved at the same time, and the intersecting targets were obtained by Venn diagram. In addition, the protein-protein interaction(PPI) network and the component-target network were constructed, and the core components and core targets were obtained by topological analysis. Then Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis were performed on the core targets, and molecular docking validation of the key targets and main components was carried out by AutoDockTools 1.5.7. H9c2 cells were used to establish a oxygen-glucose deprivation model, and the protective effect of BXG on cells was investigated by detecting cell viability, cell survival rate and reactive oxygen species(ROS) level. The protein expression levels of signal transducer and activator of transcription 3(STAT3), phosphorylation(p)-STAT3 and glutathione peroxidase 4(GPX4) were detected by Western blot to clarify the regulatory effect of BXG on ferroptosis. ResultsA total of 61 chemical components in BXG intestinal absorption fluid were identified, and network pharmacology obtained 27 potential targets of BXG for the treatment of HF, as well as 139 signaling pathways. BXG may act on core targets such as STAT3, tumor protein p53(TP53), epidermal growth factor receptor(EGFR), JUN and prostaglandin-endoperoxide synthase 2(PTGS2) through core components such as glabrolide and limonin, which in turn intervene in lipid and atherosclerosis, phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt), endocrine resistance and other signaling pathways to exert therapeutic effects on HF. Molecular docking showed that the docking results of multiple groups of targets and compounds were good. In vitro cell experiments showed that compared with the blank group, the cell viability and survival rate of the model group were significantly decreased, the level of ROS was significantly increased(P<0.01), the expression levels of STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 proteins were significantly decreased(P<0.05, P<0.01). Compared with the model group, the cell viability and survival rate of the BXG group were significantly increased, the ROS level was significantly decreased(P<0.01), the STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 protein levels were significantly increased(P<0.05, P<0.01). ConclusionBXG may inhibit the occurrence of ferroptosis by up-regulating the expression of STAT3 and GPX4, thus exerting a therapeutic effect on HF, and flavonoids may be the key components of this role.
6.MAUP Effect on Spatial Pattern of Pseudostellaria heterophylla Production Regions in China
Leting ZHANG ; Tao ZHOU ; Chengdong XU ; Zhixian JING ; Chenghong XIAO ; Hui WANG ; Tingting SHI ; Jiawei HUANG ; Xiaobo ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):183-191
ObjectiveTo investigate the modifiable areal unit problem (MAUP) in the spatial pattern of Pseudostellaria heterophylla production regions and reveal the impact of statistical scales on the spatial distribution characteristics of this medicinal plant species. MethodsUsing multi-source data (literature records, field surveys, and statistical data), we systematically analyzed the spatial patterns across three administrative levels (provincial, prefectural, and county scales). Spatial autocorrelation (Moran's I) analysis, high-low clustering (Getis-Ord General G), and hot/cold spot analysis (Getis-Ord Gi*) were employed. ResultsThe literature-based analysis showed that the production regions of P. heterophylla presented random distribution on the provincial scale and significant aggregation on the prefectural scale. The field survey data showed that the production regions displayed random distribution on the provincial scale but significant aggregation on both prefectural and county scales. The statistical data revealed that the production regions lacked spatial autocorrelation on the provincial scale but demonstrated significant aggregation on prefectural and county scales. ConclusionMAUP effects have substantive implications for understanding and decision-making in the arrangement of medicinal plant production regions. The county scale proves to be the most sensitive and explanatory level for analyzing the spatial pattern of P. heterophylla production regions, providing a critical foundation for habitat modeling, suitability evaluation, and ecological cultivation planning of medicinal plants.
7.Herbal Textual Research on Tribuli Fructus and Astragali Complanati Semen in Famous Classical Formulas
Jiaqin MOU ; Wenjing LI ; Yanzhu MA ; Yue ZHOU ; Wenfeng YAN ; Shijun YANG ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):241-251
By systematically combing ancient and modern literature, this paper examined Tribuli Fructus and Astragali Complanati Semen(ACS) used in the famous classical formulas from the aspects of name, origin, production area, harvesting and processing, clinical efficacy, so as to provide a basis for the development of famous classical formulas containing such medicinal materials. The results showed that the names of Tribuli Fructus in the past dynasties were mostly derived from its morphology, and there were nicknames such as Baijili, Cijili and Dujili. The name of ACS in the past dynasties were mostly originated from its production areas, and there were nicknames such as Baijili, Shayuan Jili and Tongjili. Because both of them had the name of Baijili, confusion began to appear in the Song dynasty. In ancient and modern times, the main origin of Tribuli Fructus were Tribulus terrestris, and ancient literature recorded the genuine producing areas of Tribuli Fructus was Dali in Shaanxi and Tianshui in Gansu, but today it is mainly cultivated in Anhui and Shandong. The fruit is the medicinal part, harvested in autumn throughout history. There is no description of the quality of Tribuli Fructus in ancient times, and the plump, firm texture, grayish-white color is the best in modern times. Traditional processing methods for Tribuli Fructus included stir-frying and wine processing, while modern commonly used is purified, fried and salt-processed. The ancient records of Tribuli Fructus were spicy, bitter, and warm in nature, with modern research adding that it is slightly toxic. The main effects of ancient and modern times include treating wind disorders, improving vision, promoting muscle growth, and treating vitiligo. The mainstream base of ACS used throughout history is Astragalus complanatus. Ancient texts indicated ACS primarily originated from Shaanxi province. Today, the finest varieties come from Tongguan and Dali in Shaanxi. The medicinal part is the seed, traditionally harvested in autumn. Modern harvesting occurs in late autumn or early winter, followed by sun-drying. Ancient texts valued seeds with a fragrant aroma as superior, while modern standards prioritize plump, uniform and free of impurities. Traditional processing methods for ACS included frying until blackened and wine-frying, while modern practice commonly employs purification methods. In terms of medicinal properties, the ancient and modern records are sweet and warm in nature. Due to originally classified under Tribuli Fructus, its effects were thus regarded as equivalent to those of Tribuli Fructus, serving as the medicine for treating wind disorders, additional functions included tonifying the kidneys and treating vitiligo. The present record of its efficacy is to tonify the kidney and promote Yang, solidify sperm and reduce urine, nourish the liver and brighten the eye, etc. Based on the textual research results, it is suggested that when developing the famous classical formulas of Tribuli Fructus medicinal materials, we should pay attention to the specific reference object of Baijili, T. terrestris and A. complanatus should be identified and selected, and the processing method should be in accordance with the requirements of the formulas.
8.Herbal Textual Research on Chrysanthemum indicum in Famous Classical Formulas
Jing WANG ; Zhen ZENG ; Yanmeng LIU ; Yihan WANG ; Qing MA ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):190-199
This article systematically analyzes the historical evolution of the name, origin, medicinal parts, harvesting, processing and others of Chrysanthemi Indici by referring to the herbal medicine, medical books, prescription books and other documents of the past dynasties, combined with the relevant modern research materials, in order to provide a basis for the development of famous classical formulas containing this medicinal herb. According to the research, Chrysanthemi Indici was first recorded under the name Kuyi in Bencao Jingjizhu, with aliases such as Yeshanju, Huangjuzai and Lubianju. The botanical source of Chrysanthemi Indici throughout history was Chrysanthemum indicum of the Asteraceae family. It is now distributed in most areas of China, and since the Qing dynasty, the product from Suichang, Zhejiang has been highly regarded. The whole plant can be used as medicine. According to the natural growth laws, the roots were collected in the first lunar month, leaves in the third, stems in the fifth, flowers in the ninth, and fruits in the eleventh, all of which were dried in the shade. In modern times, Chrysanthemi Indici is harvested during their initial blooming in autumn and winter. Since Bencao Gangmu listed Chrysanthemi Indici as a single medicinal material and clarified that all parts have medicinal value, ancient herbal texts began to record the independent medicinal use of Chrysanthemi Indici Flos, and the use of flowers as medicine has become mainstream. In modern times, the quality of Chrysanthemi Indici Flos is summarized to be best when they are dry, yellow, complete, and fragrant. Because Chrysanthemi Indici has a bitter and pungent taste, and is warm, it can eliminate and disperse, often using the power of alcohol to reach and ascend, and is commonly used to treat carbuncles, boils, and scrofula, with consistent properties and effects throughout ancient and modern times. Based on the research results, it is suggested that Chrysanthemi Indici involved in the formulas can be used as C. indicum, which can be used according to the medicinal parts labeled in the original formulas and the requirements of processing, while those without clear medicinal parts and requirements of processing should be used as the whole plant of the dried raw products.
9.Application scenarios of rare and endangered Chinese medicinal materials and their substitutes.
Wen-Ting HU ; Xiao-Bo ZHANG ; Yi-Jing ZHANG ; Zhi-Yong LI ; Lan-Ping GUO ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(10):2640-2647
Traditional Chinese medicine(TCM) resources are an important foundation for the theory and practice of TCM. Rare and endangered TCM, as a significant component of these resources, plays an essential role. Conducting research on substitutes for rare and endangered TCM resources is of great significance for alleviating resource shortages, promoting the sustainable utilization of TCM, and advancing TCM modernization. This paper reviews the conservation achievements of rare and endangered Chinese medicinal materials in China and organizes the substitution methods for these materials. Currently, the main substitution approaches include introduction and domestication, tissue culture, varietal replacement, and artificial synthesis. Furthermore, this paper proposes the following approaches for researching the application scenarios of rare and endangered medicinal materials, i.e., tracing the historical context of their use to clarify foundational principles; verifying disease classifications to strengthen the clinical application scenarios of these materials; analyzing the evolution patterns of prescription formulations to strengthen the mining of the compatibility application scenarios of rare and endangered medicinal materials; scientifically evaluating to strengthen the application scenario research and development of endangered Chinese patent medicine industry. These efforts aim to promote the scientific substitution and sustainable utilization of rare and endangered medicinal materials and their substitutes.
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Medicine, Chinese Traditional
;
China
;
Plants, Medicinal/growth & development*
;
Endangered Species
;
Conservation of Natural Resources
;
Animals
10.Mechanism related to bile acids metabolism of liver injury induced by long-term administration of emodin.
Jing-Zhuo TIAN ; Lian-Mei WANG ; Yan YI ; Zhong XIAN ; Nuo DENG ; Yong ZHAO ; Chun-Ying LI ; Yu-Shi ZHANG ; Su-Yan LIU ; Jia-Yin HAN ; Chen PAN ; Chen-Yue LIU ; Jing MENG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(11):3079-3087
Emodin is a hydroxyanthraquinone compound that is widely distributed and has multiple pharmacological activities, including anti-diarrheal, anti-inflammatory, and liver-protective effects. Research indicates that emodin may be one of the main components responsible for inducing hepatotoxicity. However, studies on the mechanisms of liver injury are relatively limited, particularly those related to bile acids(BAs) metabolism. This study aims to systematically investigate the effects of different dosages of emodin on BAs metabolism, providing a basis for the safe clinical use of traditional Chinese medicine(TCM)containing emodin. First, this study evaluated the safety of repeated administration of different dosages of emodin over a 5-week period, with a particular focus on its impact on the liver. Next, the composition and content of BAs in serum and liver were analyzed. Subsequently, qRT-PCR was used to detect the mRNA expression of nuclear receptors and transporters related to BAs metabolism. The results showed that 1 g·kg~(-1) emodin induced hepatic damage, with bile duct hyperplasia as the primary pathological manifestation. It significantly increased the levels of various BAs in the serum and primary BAs(including taurine-conjugated and free BAs) in the liver. Additionally, it downregulated the mRNA expression of farnesoid X receptor(FXR), retinoid X receptor(RXR), and sodium taurocholate cotransporting polypeptide(NTCP), and upregulated the mRNA expression of cholesterol 7α-hydroxylase(CYP7A1) in the liver. Although 0.01 g·kg~(-1) and 0.03 g·kg~(-1) emodin did not induce obvious liver injury, they significantly increased the level of taurine-conjugated BAs in the liver, suggesting a potential interference with BAs homeostasis. In conclusion, 1 g·kg~(-1) emodin may promote the production of primary BAs in the liver by affecting the FXR-RXR-CYP7A1 pathway, inhibit NTCP expression, and reduce BA reabsorption in the liver, resulting in BA accumulation in the peripheral blood. This disruption of BA homeostasis leads to liver injury. Even doses of emodin close to the clinical dose can also have a certain effect on the homeostasis of BAs. Therefore, when using traditional Chinese medicine or formulas containing emodin in clinical practice, it is necessary to regularly monitor liver function indicators and closely monitor the risk of drug-induced liver injury.
Emodin/administration & dosage*
;
Bile Acids and Salts/metabolism*
;
Animals
;
Male
;
Liver/injuries*
;
Chemical and Drug Induced Liver Injury/genetics*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Rats, Sprague-Dawley
;
Mice
;
Rats

Result Analysis
Print
Save
E-mail