1.Exploration of pharmacodynamic material basis and mechanism of Jinbei Oral Liquid against idiopathic pulmonary fibrosis based on UHPLC-Q-TOF-MS/MS and network pharmacology.
Jin-Chun LEI ; Si-Tong ZHANG ; Xian-Run HU ; Wen-Kang LIU ; Xue-Mei CHENG ; Xiao-Jun WU ; Wan-Sheng CHEN ; Man-Lin LI ; Chang-Hong WANG
China Journal of Chinese Materia Medica 2025;50(10):2825-2840
This study aims to explore the pharmacodynamic material basis of Jinbei Oral Liquid(JBOL) against idiopathic pulmonary fibrosis(IPF) based on serum pharmacochemistry and network pharmacology. The ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technology was employed to analyze and identify the components absorbed into rat blood after oral administration of JBOL. Combined with network pharmacology, the study explored the pharmacodynamic material basis and potential mechanism of JBOL against IPF through protein-protein interaction(PPI) network construction, "component-target-pathway" analysis, Gene Ontology(GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. First, a total of 114 compounds were rapidly identified in JBOL extract according to the exact relative molecular mass, fragment ions, and other information of the compounds with the use of reference substances and a self-built compound database. Second, on this basis, 70 prototype components in blood were recognized by comparing blank serum with drug-containing serum samples, including 28 flavonoids, 25 organic acids, 4 saponins, 4 alkaloids, and 9 others. Finally, using these components absorbed into blood as candidates, the study obtained 212 potential targets of JBOL against IPF. The anti-IPF mechanism might involve the action of active ingredients such as glycyrrhetinic acid, cryptotanshinone, salvianolic acid B, and forsythoside A on core targets like AKT1, TNF, and ALB and thereby the regulation of multiple signaling pathways including PI3K/AKT, HIF-1, and TNF. In conclusion, JBOL exerts the anti-IPF effect through multiple components, targets, and pathways. The results would provide a reference for further study on pharmacodynamic material basis and pharmacological mechanism of JBOL.
Drugs, Chinese Herbal/pharmacokinetics*
;
Animals
;
Tandem Mass Spectrometry
;
Network Pharmacology
;
Rats
;
Chromatography, High Pressure Liquid
;
Rats, Sprague-Dawley
;
Male
;
Idiopathic Pulmonary Fibrosis/metabolism*
;
Humans
;
Administration, Oral
;
Protein Interaction Maps/drug effects*
;
Signal Transduction/drug effects*
2.Design, synthesis and biological evaluation of a novel class of indazole-containing compounds with potent anti-influenza activities targeting the PA-PB1 interface.
Yun-Sang TANG ; Chao ZHANG ; Jing XU ; Haibo ZHANG ; Zhe JIN ; Mengjie XIAO ; Nuermila YILIYAER ; Er-Fang HUANG ; Xin ZHAO ; Chun HU ; Pang-Chui SHAW
Acta Pharmaceutica Sinica B 2025;15(6):3163-3180
The PA-PB1 interface of the influenza polymerase is an attractive site for antiviral drug design. In this study, we designed and synthesized a mini-library of indazole-containing compounds based on rational structure-based design to target the PB1-binding interface on PA. Biological evaluation of these compounds through a viral yield reduction assay revealed that compounds 27 and 31 both had a low micromolar range of the half maximal effective concentration (EC50) values against A/WSN/33 (H1N1) (8.03 μmol/L for 27; 14.6 μmol/L for 31), while the most potent candidate 24 had an EC50 value of 690 nM. Compound 24 was effective against different influenza strains including a pandemic H1N1 strain and an influenza B strain. Mechanistic studies confirmed that compound 24 bound PA with a K d which equals to 1.88 μmol/L and disrupted the binding of PB1 to PA. The compound also decreased the lung viral titre in mice. In summary, we have identified a potent anti-influenza candidate with potency comparable to existing drugs and is effective against different viral strains. The therapeutic options for influenza infection have been limited by the occurrence of antiviral resistance, owing to the high mutation rate of viral proteins targeted by available drugs. To alleviate the public health burden of this issue, novel anti-influenza drugs are desired. In this study, we present our discovery of a novel class of indazole-containing compounds which exhibited favourable potency against both influenza A and B viruses. The EC50 of the most potent compounds were within low micromolar to nanomolar concentrations. Furthermore, we show that the mouse lung viral titre decreased due to treatment with compound 24. Thus our findings identify promising candidates for further development of anti-influenza drugs suitable for clinical use.
3.Nogo-A Protein Mediates Oxidative Stress and Synaptic Damage Induced by High-Altitude Hypoxia in the Rat Hippocampus.
Jin Yu FANG ; Huai Cun LIU ; Yan Fei ZHANG ; Quan Cheng CHENG ; Zi Yuan WANG ; Xuan FANG ; Hui Ru DING ; Wei Guang ZHANG ; Chun Hua CHEN
Biomedical and Environmental Sciences 2025;38(1):79-93
OBJECTIVE:
High-altitude hypoxia exposure often damages hippocampus-dependent learning and memory. Nogo-A is an important axonal growth inhibitory factor. However, its function in high-altitude hypoxia and its mechanism of action remain unclear.
METHODS:
In an in vivo study, a low-pressure oxygen chamber was used to simulate high-altitude hypoxia, and genetic or pharmacological intervention was used to block the Nogo-A/NgR1 signaling pathway. Contextual fear conditioning and Morris water maze behavioral tests were used to assess learning and memory in rats, and synaptic damage in the hippocampus and changes in oxidative stress levels were observed. In vitro, SH-SY5Y cells were used to assess oxidative stress and mitochondrial function with or without Nogo-A knockdown in Oxygen Glucose-Deprivation/Reperfusion (OGD/R) models.
RESULTS:
Exposure to acute high-altitude hypoxia for 3 or 7 days impaired learning and memory in rats, triggered oxidative stress in the hippocampal tissue, and reduced the dendritic spine density of hippocampal neurons. Blocking the Nogo-A/NgR1 pathway ameliorated oxidative stress, synaptic damage, and the learning and memory impairment induced by high-altitude exposure.
CONCLUSION:
Our results demonstrate the detrimental role of Nogo-A protein in mediating learning and memory impairment under high-altitude hypoxia and suggest the potential of the Nogo-A/NgR1 signaling pathway as a crucial therapeutic target for alleviating learning and memory dysfunction induced by high-altitude exposure.
GRAPHICAL ABSTRACT
available in www.besjournal.com.
Animals
;
Oxidative Stress
;
Hippocampus/metabolism*
;
Rats
;
Nogo Proteins/genetics*
;
Male
;
Rats, Sprague-Dawley
;
Hypoxia/metabolism*
;
Altitude
;
Synapses
;
Humans
;
Altitude Sickness/metabolism*
4.Association of Body Mass Index with All-Cause Mortality and Cause-Specific Mortality in Rural China: 10-Year Follow-up of a Population-Based Multicenter Prospective Study.
Juan Juan HUANG ; Yuan Zhi DI ; Ling Yu SHEN ; Jian Guo LIANG ; Jiang DU ; Xue Fang CAO ; Wei Tao DUAN ; Ai Wei HE ; Jun LIANG ; Li Mei ZHU ; Zi Sen LIU ; Fang LIU ; Shu Min YANG ; Zu Hui XU ; Cheng CHEN ; Bin ZHANG ; Jiao Xia YAN ; Yan Chun LIANG ; Rong LIU ; Tao ZHU ; Hong Zhi LI ; Fei SHEN ; Bo Xuan FENG ; Yi Jun HE ; Zi Han LI ; Ya Qi ZHAO ; Tong Lei GUO ; Li Qiong BAI ; Wei LU ; Qi JIN ; Lei GAO ; He Nan XIN
Biomedical and Environmental Sciences 2025;38(10):1179-1193
OBJECTIVE:
This study aimed to explore the association between body mass index (BMI) and mortality based on the 10-year population-based multicenter prospective study.
METHODS:
A general population-based multicenter prospective study was conducted at four sites in rural China between 2013 and 2023. Multivariate Cox proportional hazards models and restricted cubic spline analyses were used to assess the association between BMI and mortality. Stratified analyses were performed based on the individual characteristics of the participants.
RESULTS:
Overall, 19,107 participants with a sum of 163,095 person-years were included and 1,910 participants died. The underweight (< 18.5 kg/m 2) presented an increase in all-cause mortality (adjusted hazards ratio [ aHR] = 2.00, 95% confidence interval [ CI]: 1.66-2.41), while overweight (≥ 24.0 to < 28.0 kg/m 2) and obesity (≥ 28.0 kg/m 2) presented a decrease with an aHR of 0.61 (95% CI: 0.52-0.73) and 0.51 (95% CI: 0.37-0.70), respectively. Overweight ( aHR = 0.76, 95% CI: 0.67-0.86) and mild obesity ( aHR = 0.72, 95% CI: 0.59-0.87) had a positive impact on mortality in people older than 60 years. All-cause mortality decreased rapidly until reaching a BMI of 25.7 kg/m 2 ( aHR = 0.95, 95% CI: 0.92-0.98) and increased slightly above that value, indicating a U-shaped association. The beneficial impact of being overweight on mortality was robust in most subgroups and sensitivity analyses.
CONCLUSION
This study provides additional evidence that overweight and mild obesity may be inversely related to the risk of death in individuals older than 60 years. Therefore, it is essential to consider age differences when formulating health and weight management strategies.
Humans
;
Body Mass Index
;
China/epidemiology*
;
Male
;
Female
;
Middle Aged
;
Prospective Studies
;
Rural Population/statistics & numerical data*
;
Aged
;
Follow-Up Studies
;
Adult
;
Mortality
;
Cause of Death
;
Obesity/mortality*
;
Overweight/mortality*
5.Metagenomic Next-Generation Sequencing-Assisted Diagnosis of Japanese Spotted Fever: Report of One Case.
Yong-Chun RUAN ; Yi-Qing ZHOU ; Hai-Wang ZHANG ; Jie ZHOU ; Jin-Nan DUAN ; Xiao-Jing ZHANG ; L I MING-HUI
Acta Academiae Medicinae Sinicae 2025;47(1):146-149
Japanese spotted fever(JSF)is an infectious disease caused by Rickettsia japonica,with nonspecific clinical symptoms and a high risk of misdiagnosis.We reported a case of JSF,in which Rickettsia japonica was detected in blood cells by metagenomic next-generation sequencing.The patient recovered after treatment with doxycycline.This report provides a reference for the clinical diagnosis and treatment of JSF.
Humans
;
High-Throughput Nucleotide Sequencing
;
Metagenomics
;
Rickettsia/isolation & purification*
;
Spotted Fever Group Rickettsiosis/microbiology*
6.Norepinephrine triggers glutamatergic long-term potentiation in hypothalamic paraventricular nucleus magnocellular neuroendocrine cells through postsynaptic ββ1-AR/PKA signaling pathway in vitro in rats
Jing-Ri JIN ; Zhao-Yi ZHANG ; Chun-Ping CHU ; Yu-Zi LI ; De-Lai QIU
The Korean Journal of Physiology and Pharmacology 2024;28(6):569-576
Norepinephrine (NE) modulates synaptic transmission and long-term plasticity through distinct subtype adrenergic receptor (AR)-mediated-intracellular signaling cascades. However, the role of NE modulates glutamatergic long-term potentiation (LTP) in the hypothalamic paraventricular nucleus (PVN) magnocellular neuroendocrine cells (MNCs) is unclear. We here investigate the effect of NE on high frequency stimulation (HFS)-induced glutamatergic LTP in rat hypothalamic PVN MNCs in vitro, by whole-cell patch-clamp recording, biocytin staining and pharmacological methods. Delivery of HFS induced glutamatergic LTP with a decrease in N2/N1 ratio in the PVN MNCs, which was enhanced by application of NE (100 nM).HFS-induced LTP was abolished by the blockade of N-methyl-D-aspartate receptors (NMDAR) with D-APV, but it was rescued by the application of NE. NE failed to rescue HFS-induced LTP of MNCs in the presence of a selective β1-AR antagonist, CGP 20712. However, application of β1-AR agonist, dobutamine HCl rescued HFS-induced LTP of MNCs in the absence of NMDAR activity. In the absence of NMDAR activity, NE failed to rescue HFS-induced MNC LTP when protein kinase A (PKA) was inhibited by extracellular applying KT5720 or intracellular administration of PKI. These results indicate that NE activates β1-AR and triggers HFS to induce a novel glutamatergic LTP of hypothalamic PVN NMCs via the postsynaptic PKA signaling pathway in vitro in rats.
7.Norepinephrine triggers glutamatergic long-term potentiation in hypothalamic paraventricular nucleus magnocellular neuroendocrine cells through postsynaptic ββ1-AR/PKA signaling pathway in vitro in rats
Jing-Ri JIN ; Zhao-Yi ZHANG ; Chun-Ping CHU ; Yu-Zi LI ; De-Lai QIU
The Korean Journal of Physiology and Pharmacology 2024;28(6):569-576
Norepinephrine (NE) modulates synaptic transmission and long-term plasticity through distinct subtype adrenergic receptor (AR)-mediated-intracellular signaling cascades. However, the role of NE modulates glutamatergic long-term potentiation (LTP) in the hypothalamic paraventricular nucleus (PVN) magnocellular neuroendocrine cells (MNCs) is unclear. We here investigate the effect of NE on high frequency stimulation (HFS)-induced glutamatergic LTP in rat hypothalamic PVN MNCs in vitro, by whole-cell patch-clamp recording, biocytin staining and pharmacological methods. Delivery of HFS induced glutamatergic LTP with a decrease in N2/N1 ratio in the PVN MNCs, which was enhanced by application of NE (100 nM).HFS-induced LTP was abolished by the blockade of N-methyl-D-aspartate receptors (NMDAR) with D-APV, but it was rescued by the application of NE. NE failed to rescue HFS-induced LTP of MNCs in the presence of a selective β1-AR antagonist, CGP 20712. However, application of β1-AR agonist, dobutamine HCl rescued HFS-induced LTP of MNCs in the absence of NMDAR activity. In the absence of NMDAR activity, NE failed to rescue HFS-induced MNC LTP when protein kinase A (PKA) was inhibited by extracellular applying KT5720 or intracellular administration of PKI. These results indicate that NE activates β1-AR and triggers HFS to induce a novel glutamatergic LTP of hypothalamic PVN NMCs via the postsynaptic PKA signaling pathway in vitro in rats.
8.Norepinephrine triggers glutamatergic long-term potentiation in hypothalamic paraventricular nucleus magnocellular neuroendocrine cells through postsynaptic ββ1-AR/PKA signaling pathway in vitro in rats
Jing-Ri JIN ; Zhao-Yi ZHANG ; Chun-Ping CHU ; Yu-Zi LI ; De-Lai QIU
The Korean Journal of Physiology and Pharmacology 2024;28(6):569-576
Norepinephrine (NE) modulates synaptic transmission and long-term plasticity through distinct subtype adrenergic receptor (AR)-mediated-intracellular signaling cascades. However, the role of NE modulates glutamatergic long-term potentiation (LTP) in the hypothalamic paraventricular nucleus (PVN) magnocellular neuroendocrine cells (MNCs) is unclear. We here investigate the effect of NE on high frequency stimulation (HFS)-induced glutamatergic LTP in rat hypothalamic PVN MNCs in vitro, by whole-cell patch-clamp recording, biocytin staining and pharmacological methods. Delivery of HFS induced glutamatergic LTP with a decrease in N2/N1 ratio in the PVN MNCs, which was enhanced by application of NE (100 nM).HFS-induced LTP was abolished by the blockade of N-methyl-D-aspartate receptors (NMDAR) with D-APV, but it was rescued by the application of NE. NE failed to rescue HFS-induced LTP of MNCs in the presence of a selective β1-AR antagonist, CGP 20712. However, application of β1-AR agonist, dobutamine HCl rescued HFS-induced LTP of MNCs in the absence of NMDAR activity. In the absence of NMDAR activity, NE failed to rescue HFS-induced MNC LTP when protein kinase A (PKA) was inhibited by extracellular applying KT5720 or intracellular administration of PKI. These results indicate that NE activates β1-AR and triggers HFS to induce a novel glutamatergic LTP of hypothalamic PVN NMCs via the postsynaptic PKA signaling pathway in vitro in rats.
9.Stress analysis of trabecular hip prosthesis stem implantation
Bo LI ; Li-Lan GAO ; Ya CHEN ; Shu-Hong LIU ; Ya-Hui HU ; Lin-Wei LYU ; Jin-Duo YE ; Chun-Qiu ZHANG
Chinese Medical Equipment Journal 2024;45(3):29-35
Objective To analyze the stresses in implanted titanium solid and bone trabecular prosthesis hip replacements.Methods A femur model was built inversely based on Mimics software,and optimized using Geomagic software,and then materialized by SolidWorks software.The osteotomized femur was assembled with the metal femoral stem to form a model,and then the model was imported into ABAQUS for finite element calculation.The upper femur was divided into four regions in different states of integration:medial proximal point(small trochanter region),lateral proximal region(large trochanter region),proximal point of the femoral stem(region around the mid-portion of the styloid process)and distal region(around the end of the styloid process and distal portion).Calculations were carried out over the femoral stresses before and after implantation of titanium solid and trabecular prostheses under gait and stair-climbing loads and the interfacial stresses when the region was unintegrated.The type of deformation at the bone interface was analyzed by means of a stress ellipsoid.Results At the small trochanter region,the stress shielding rates of the trabecular prosthesis under gait and stair climbing loads were reduced by 20.5%and 14.7%compared to the titanium solid prosthesis,respectively.In case of different integration states of the titanium solid prosthesis,the interface tensile stresses under the gait and stair climbing loads were up to 10.842 MPa and 12.900 MPa,and the shear stresses reached 7.050 MPa and 6.805 MPa,respectively;in case of different integration states of the trabecular prosthesis,the interface tensile stresses under the gait and stair climbing loads were up to 3.858 MPa and 4.389 MPa,and the shear stresses reached 4.156 MPa and 3.854 MPa,respectively.Under the 2 different loads,the inboard shear stress ellipsoid of the interface opened toward the sides and the bone interface showed tensile deformation;the outboard shear stress ellipsoid of the interface opened up and down and had compressive deformation.Conclusion After total hip arthroplasty,the overall performance of the trabecular prosthesis is better than that of the titanium solid prosthesis.The unintegrated edges of the prosthesis-bone interface are susceptible to stress concentrations and distortion which may result in occurrence of failures.[Chinese Medical Equipment Journal,2024,45(3):29-35]
10.Norepinephrine triggers glutamatergic long-term potentiation in hypothalamic paraventricular nucleus magnocellular neuroendocrine cells through postsynaptic ββ1-AR/PKA signaling pathway in vitro in rats
Jing-Ri JIN ; Zhao-Yi ZHANG ; Chun-Ping CHU ; Yu-Zi LI ; De-Lai QIU
The Korean Journal of Physiology and Pharmacology 2024;28(6):569-576
Norepinephrine (NE) modulates synaptic transmission and long-term plasticity through distinct subtype adrenergic receptor (AR)-mediated-intracellular signaling cascades. However, the role of NE modulates glutamatergic long-term potentiation (LTP) in the hypothalamic paraventricular nucleus (PVN) magnocellular neuroendocrine cells (MNCs) is unclear. We here investigate the effect of NE on high frequency stimulation (HFS)-induced glutamatergic LTP in rat hypothalamic PVN MNCs in vitro, by whole-cell patch-clamp recording, biocytin staining and pharmacological methods. Delivery of HFS induced glutamatergic LTP with a decrease in N2/N1 ratio in the PVN MNCs, which was enhanced by application of NE (100 nM).HFS-induced LTP was abolished by the blockade of N-methyl-D-aspartate receptors (NMDAR) with D-APV, but it was rescued by the application of NE. NE failed to rescue HFS-induced LTP of MNCs in the presence of a selective β1-AR antagonist, CGP 20712. However, application of β1-AR agonist, dobutamine HCl rescued HFS-induced LTP of MNCs in the absence of NMDAR activity. In the absence of NMDAR activity, NE failed to rescue HFS-induced MNC LTP when protein kinase A (PKA) was inhibited by extracellular applying KT5720 or intracellular administration of PKI. These results indicate that NE activates β1-AR and triggers HFS to induce a novel glutamatergic LTP of hypothalamic PVN NMCs via the postsynaptic PKA signaling pathway in vitro in rats.

Result Analysis
Print
Save
E-mail