1.Mechanisms of Gut Microbiota Influencing Reproductive Function via The Gut-Gonadal Axis
Ya-Qi ZHAO ; Li-Li QI ; Jin-Bo WANG ; Xu-Qi HU ; Meng-Ting WANG ; Hai-Guang MAO ; Qiu-Zhen SUN
Progress in Biochemistry and Biophysics 2025;52(5):1152-1164
Reproductive system diseases are among the primary contributors to the decline in social fertility rates and the intensification of aging, posing significant threats to both physical and mental health, as well as quality of life. Recent research has revealed the substantial potential of the gut microbiota in improving reproductive system diseases. Under healthy conditions, the gut microbiota maintains a dynamic balance, whereas dysfunction can trigger immune-inflammatory responses, metabolic disorders, and other issues, subsequently leading to reproductive system diseases through the gut-gonadal axis. Reproductive diseases, in turn, can exacerbate gut microbiota imbalance. This article reviews the impact of the gut microbiota and its metabolites on both male and female reproductive systems, analyzing changes in typical gut microorganisms and their metabolites related to reproductive function. The composition, diversity, and metabolites of gut bacteria, such as Bacteroides, Prevotella, and Firmicutes, including short-chain fatty acids, 5-hydroxytryptamine, γ-aminobutyric acid, and bile acids, are closely linked to reproductive function. As reproductive diseases develop, intestinal immune function typically undergoes changes, and the expression levels of immune-related factors, such as Toll-like receptors and inflammatory cytokines (including IL-6, TNF-α, and TGF-β), also vary. The gut microbiota and its metabolites influence reproductive hormones such as estrogen, luteinizing hormone, and testosterone, thereby affecting folliculogenesis and spermatogenesis. Additionally, the metabolism and absorption of vitamins can also impact spermatogenesis through the gut-testis axis. As the relationship between the gut microbiota and reproductive diseases becomes clearer, targeted regulation of the gut microbiota can be employed to address reproductive system issues in both humans and animals. This article discusses the regulation of the gut microbiota and intestinal immune function through microecological preparations, fecal microbiota transplantation, and drug therapy to treat reproductive diseases. Microbial preparations and drug therapy can help maintain the intestinal barrier and reduce chronic inflammation. Fecal microbiota transplantation involves transferring feces from healthy individuals into the recipient’s intestine, enhancing mucosal integrity and increasing microbial diversity. This article also delves into the underlying mechanisms by which the gut microbiota influences reproductive capacity through the gut-gonadal axis and explores the latest research in diagnosing and treating reproductive diseases using gut microbiota. The goal is to restore reproductive capacity by targeting the regulation of the gut microbiota. While the gut microbiota holds promise as a therapeutic target for reproductive diseases, several challenges remain. First, research on the association between gut microbiota and reproductive diseases is insufficient to establish a clear causal relationship, which is essential for proposing effective therapeutic methods targeting the gut microbiota. Second, although gut microbiota metabolites can influence lipid, glucose, and hormone synthesis and metabolism via various signaling pathways—thereby indirectly affecting ovarian and testicular function—more in-depth research is required to understand the direct effects of these metabolites on germ cells or granulosa cells. Lastly, the specific efficacy of gut microbiota in treating reproductive diseases is influenced by multiple factors, necessitating further mechanistic research and clinical studies to validate and optimize treatment regimens.
2.Mechanisms and Molecular Networks of Hypoxia-regulated Tumor Cell Dormancy
Mao ZHAO ; Jin-Qiu FENG ; Ze-Qi GAO ; Ping WANG ; Jia FU
Progress in Biochemistry and Biophysics 2025;52(9):2267-2279
Dormant tumor cells constitute a population of cancer cells that reside in a non-proliferative or low-proliferative state, typically arrested in the G0/G1 phase and exhibiting minimal mitotic activity. These cells are commonly observed across multiple cancer types, including breast, lung, and ovarian cancers, and represent a central cellular component of minimal residual disease (MRD) following surgical resection of the primary tumor. Dormant cells are closely associated with long-term clinical latency and late-stage relapse. Due to their quiescent nature, dormant cells are intrinsically resistant to conventional therapies—such as chemotherapy and radiotherapy—that preferentially target rapidly dividing cells. In addition, they display enhanced anti-apoptotic capacity and immune evasion, rendering them particularly difficult to eradicate. More critically, in response to microenvironmental changes or activation of specific signaling pathways, dormant cells can re-enter the cell cycle and initiate metastatic outgrowth or tumor recurrence. This ability to escape dormancy underscores their clinical threat and positions their effective detection and elimination as a major challenge in contemporary cancer treatment. Hypoxia, a hallmark of the solid tumor microenvironment, has been widely recognized as a potent inducer of tumor cell dormancy. However, the molecular mechanisms by which tumor cells sense and respond to hypoxic stress—initiating the transition into dormancy—remain poorly defined. In particular, the lack of a systems-level understanding of the dynamic and multifactorial regulatory landscape has impeded the identification of actionable targets and constrained the development of effective therapeutic strategies. Accumulating evidence indicates that hypoxia-induced dormancy tumor cells are accompanied by a suite of adaptive phenotypes, including cell cycle arrest, global suppression of protein synthesis, metabolic reprogramming, autophagy activation, resistance to apoptosis, immune evasion, and therapy tolerance. These changes are orchestrated by multiple converging signaling pathways—such as PI3K-AKT-mTOR, Ras-Raf-MEK-ERK, and AMPK—that together constitute a highly dynamic and interconnected regulatory network. While individual pathways have been studied in depth, most investigations remain reductionist and fail to capture the temporal progression and network-level coordination underlying dormancy transitions. Systems biology offers a powerful framework to address this complexity. By integrating high-throughput multi-omics data—such as transcriptomics and proteomics—researchers can reconstruct global regulatory networks encompassing the key signaling axes involved in dormancy regulation. These networks facilitate the identification of core regulatory modules and elucidate functional interactions among key effectors. When combined with dynamic modeling approaches—such as ordinary differential equations—these frameworks enable the simulation of temporal behaviors of critical signaling nodes, including phosphorylated AMPK (p-AMPK), phosphorylated S6 (p-S6), and the p38/ERK activity ratio, providing insights into how their dynamic changes govern transitions between proliferation and dormancy. Beyond mapping trajectories from proliferation to dormancy and from shallow to deep dormancy, such dynamic regulatory models support topological analyses to identify central hubs and molecular switches. Key factors—such as NR2F1, mTORC1, ULK1, HIF-1α, and DYRK1A—have emerged as pivotal nodes within these networks and represent promising therapeutic targets. Constructing an integrative, systems-level regulatory framework—anchored in multi-pathway coordination, omics-layer integration, and dynamic modeling—is thus essential for decoding the architecture and progression of tumor dormancy. Such a framework not only advances mechanistic understanding but also lays the foundation for precision therapies targeting dormant tumor cells during the MRD phase, addressing a critical unmet need in cancer management.
3.Cerebral oxygen metabolism and brain electrical activity of healthy full-term neonates in high-altitude areas:a multicenter clinical research protocol
Bi ZE ; Jin GAO ; Xiao-Fen ZHAO ; Yang-Fang LI ; Tie-Song ZHANG ; Xiao-Mei LIU ; Hui MAO ; Ming-Cai QIN ; Yi ZHANG ; Yong-Li YANG ; Chun-Ye HE ; Yan ZHAO ; Kun DU ; Lin LIU ; Wen-Hao ZHOU ; Chinese High Altitude Neonatal Medicine Alliance
Chinese Journal of Contemporary Pediatrics 2024;26(4):403-409
Further evidence is needed to explore the impact of high-altitude environments on the neurologic function of neonates.Non-invasive techniques such as cerebral near-infrared spectroscopy and amplitude-integrated electroencephalography can provide data on cerebral oxygenation and brain electrical activity.This study will conduct multiple cerebral near-infrared spectroscopy and amplitude-integrated electroencephalography monitoring sessions at various time points within the first 3 days postpartum for healthy full-term neonates at different altitudes.The obtained data on cerebral oxygenation and brain electrical activity will be compared between different altitudes,and corresponding reference ranges will be established.The study involves 6 participating centers in the Chinese High Altitude Neonatal Medicine Alliance,with altitude gradients divided into 4 categories:800 m,1 900 m,2 400 m,and 3 500 m,with an anticipated sample size of 170 neonates per altitude gradient.This multicenter prospective cohort study aims to provide evidence supporting the impact of high-altitude environments on early brain function and metabolism in neonates.[Chinese Journal of Contemporary Pediatrics,2024,26(4):403-409]
4.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
5.Carrier screening for 223 monogenic diseases in Chinese population:a multi-center study in 33 104 individuals
Wei HOU ; Xiaolin FU ; Xiaoxiao XIE ; Chunyan ZHANG ; Jiaxin BIAN ; Xiao MAO ; Juan WEN ; Chunyu LUO ; Hua JIN ; Qian ZHU ; Qingwei QI ; Yeqing QIAN ; Jing YUAN ; Yanyan ZHAO ; Ailan YIN ; Shutie LI ; Yulin JIANG ; Manli ZHANG ; Rui XIAO ; Yanping LU
Journal of Southern Medical University 2024;44(6):1015-1023
Objective To investigate the epidemiological characteristics and mutation spectrum of monogenic diseases in Chinese population through a large-scale,multicenter carrier screening.Methods This study was conducted among a total of 33 104 participants(16 610 females)from 12 clinical centers across China.Carrier status for 223 genes was analyzed using high-throughput sequencing and different PCR methods.Results The overall combined carrier frequency was 55.58%for 197 autosomal genes and 1.84%for 26 X-linked genes in these participants.Among the 16 669 families,874 at-risk couples(5.24%)were identified.Specifically,584 couples(3.50%)were at risk for autosomal genes,306(1.84%)for X-linked genes,and 16 for both autosomal and X-linked genes.The most frequently detected autosomal at-risk genes included GJB2(autosomal recessive deafness type 1A,393 couples),HBA1/HBA2(α-thalassemia,36 couples),PAH(phenylketonuria,14 couples),and SMN1(spinal muscular atrophy,14 couples).The most frequently detected X-linked at-risk genes were G6PD(G6PD deficiency,236 couples),DMD(Duchenne muscular dystrophy,23 couples),and FMR1(fragile X syndrome,17 couples).After excluding GJB2 c.109G>A,the detection rate of at-risk couples was 3.91%(651/16 669),which was lowered to 1.72%(287/16 669)after further excluding G6PD.The theoretical incidence rate of severe monogenic birth defects was approximately 4.35‰(72.5/16 669).Screening for a battery of the top 22 most frequent genes in the at-risk couples could detect over 95%of at-risk couples,while screening for the top 54 genes further increased the detection rate to over 99%.Conclusion This study reveals the carrier frequencies of 223 monogenic genetic disorders in the Chinese population and provides evidence for carrier screening strategy development and panel design tailored to the Chinese population.In carrier testing,genetic counseling for specific genes or gene variants can be challenging,and the couples need to be informed of these difficulties before testing and provided with options for not screening these genes or gene variants.
6.Carrier screening for 223 monogenic diseases in Chinese population:a multi-center study in 33 104 individuals
Wei HOU ; Xiaolin FU ; Xiaoxiao XIE ; Chunyan ZHANG ; Jiaxin BIAN ; Xiao MAO ; Juan WEN ; Chunyu LUO ; Hua JIN ; Qian ZHU ; Qingwei QI ; Yeqing QIAN ; Jing YUAN ; Yanyan ZHAO ; Ailan YIN ; Shutie LI ; Yulin JIANG ; Manli ZHANG ; Rui XIAO ; Yanping LU
Journal of Southern Medical University 2024;44(6):1015-1023
Objective To investigate the epidemiological characteristics and mutation spectrum of monogenic diseases in Chinese population through a large-scale,multicenter carrier screening.Methods This study was conducted among a total of 33 104 participants(16 610 females)from 12 clinical centers across China.Carrier status for 223 genes was analyzed using high-throughput sequencing and different PCR methods.Results The overall combined carrier frequency was 55.58%for 197 autosomal genes and 1.84%for 26 X-linked genes in these participants.Among the 16 669 families,874 at-risk couples(5.24%)were identified.Specifically,584 couples(3.50%)were at risk for autosomal genes,306(1.84%)for X-linked genes,and 16 for both autosomal and X-linked genes.The most frequently detected autosomal at-risk genes included GJB2(autosomal recessive deafness type 1A,393 couples),HBA1/HBA2(α-thalassemia,36 couples),PAH(phenylketonuria,14 couples),and SMN1(spinal muscular atrophy,14 couples).The most frequently detected X-linked at-risk genes were G6PD(G6PD deficiency,236 couples),DMD(Duchenne muscular dystrophy,23 couples),and FMR1(fragile X syndrome,17 couples).After excluding GJB2 c.109G>A,the detection rate of at-risk couples was 3.91%(651/16 669),which was lowered to 1.72%(287/16 669)after further excluding G6PD.The theoretical incidence rate of severe monogenic birth defects was approximately 4.35‰(72.5/16 669).Screening for a battery of the top 22 most frequent genes in the at-risk couples could detect over 95%of at-risk couples,while screening for the top 54 genes further increased the detection rate to over 99%.Conclusion This study reveals the carrier frequencies of 223 monogenic genetic disorders in the Chinese population and provides evidence for carrier screening strategy development and panel design tailored to the Chinese population.In carrier testing,genetic counseling for specific genes or gene variants can be challenging,and the couples need to be informed of these difficulties before testing and provided with options for not screening these genes or gene variants.
7.Research progress on drug resistance mechanism of sorafenib in radioiodine refractory differentiated thyroid cancer
En-Tao ZHANG ; Hao-Nan ZHU ; Zheng-Ze WEN ; Cen-Hui ZHANG ; Yi-Huan ZHAO ; Ying-Jie MAO ; Jun-Pu WU ; Yu-Cheng JIN ; Xin JIN
The Chinese Journal of Clinical Pharmacology 2024;40(13):1986-1990
Most patients with differentiated thyroid cancer have a good prognosis after radioiodine-131 therapy,but a small number of patients are insensitive to radioiodine-131 therapy and even continue to develop disease.At present,some targeted drugs can improve progression-free survival in patients with radioactive iodine-refractory differentiated thyroid cancer(RAIR-DTC),such as sorafenib and levatinib,have been approved for the treatment of RAIR-DTC.However,due to the presence of primary and acquired drug resistance,drug efficacy in these patients is unsatisfactory.This review introduces the acquired drug resistance mechanism of sorafenib in the regulation of mitogen-activated protein kinase(MAPK)and phosphatidylinositol-3-kinase(PI3K)pathways and proposes related treatment strategies,in order to provide a reference for similar drug resistance mechanism of sorafenib and effective treatment of RAIR-DTC.
8.Epidemiological investigation of iron deficiency among preschool children in 10 provinces, autonomous regions, or municipalities in China
Lei WANG ; Jie SHAO ; Wenhong DONG ; Shuangshuang ZHENG ; Bingquan ZHU ; Qiang SHU ; Wei CHEN ; Lichun FAN ; Jin SUN ; Yue GAO ; Youfang HU ; Nianrong WANG ; Zhaohui WANG ; Tingting NIU ; Yan LUO ; Ju GAO ; Meiling TONG ; Yan HU ; Wei XIANG ; Zhengyan ZHAO ; Meng MAO ; Fan JIANG
Chinese Journal of Pediatrics 2024;62(5):416-422
Objective:To understand the current status of anemia, iron deficiency, and iron-deficiency anemia among preschool children in China.Methods:A cross-sectional study was conducted with a multi-stage stratified sampling method to select 150 streets or townships from 10 Chinese provinces, autonomous regions, or municipalities (East: Jiangsu, Zhejiang, Shandong, and Hainan; Central: Henan; West: Chongqing, Shaanxi, Guizhou, and Xinjiang; Northeast: Liaoning). From May 2022 to April 2023, a total of 21 470 children, including community-based children aged 0.5 to<3.0 years receiving child health care and kindergarten-based children aged 3.0 to<7.0 years, were surveyed. They were divided into 3 age groups: infants (0.5 to<1.0 year), toddlers (1.0 to<3.0 years), and preschoolers (3.0 to<7.0 years). Basic information such as sex and date of birth of the children was collected, and peripheral blood samples were obtained for routine blood tests and serum ferritin measurement. The prevalence rates of anemia, iron deficiency, and iron-deficiency anemia were analyzed, and the prevalence rate differences were compared among different ages, sex, urban and rural areas, and regions using the chi-square test.Results:A total of 21 460 valid responses were collected, including 10 780 boys (50.2%). The number of infants, toddlers, and preschoolers were 2 645 (12.3%), 6 244 (29.1%), and 12 571 (58.6%), respectively. The hemoglobin level was (126.7±14.8) g/L, and the serum ferritin level was 32.3 (18.5, 50.1) μg/L. The overall rates of anemia, iron deficiency, and iron-deficiency anemia were 10.4% (2 230/21 460), 28.3% (6 070/21 460), and 3.9% (845/21 460), respectively. The prevalence rate of anemia was higher for boys than for girls (10.9% (1 173/10 780) vs. 9.9% (1 057/10 680), χ2=5.58, P=0.018), with statistically significant differences in the rates for infants, toddlers and preschoolers (18.0% (475/2 645), 10.6% (662/6 244), and 8.7% (1 093/12 571), respectively, χ2=201.81, P<0.01), and the rate was significantly higher for children in rural than that in urban area (11.8% (1 516/12 883) vs. 8.3% (714/8 577), χ2=65.54, P<0.01), with statistically significant differences in the rates by region ( χ2=126.60, P<0.01), with the highest rate of 15.8% (343/2 173) for children in Central region, and the lowest rate of 5.3% (108/2 053) in Northeastern region. The prevalence rates of iron deficiency were 33.8% (895/2 645), 32.2% (2 011/6 244), and 25.2% (3 164/12 571) in infants, toddlers, and preschoolers, respectively, and 30.0% (3 229/10 780) in boys vs. 26.6% (2 841/10 680) in girls, 21.7% (1 913/8 821), 40.0% (870/2 173), 27.1% (2 283/8 413), 48.9% (1 004/2 053) in Eastern, Central, Western, and Northeastern regions, respectively, and each between-group showed a significant statistical difference ( χ2=147.71, 29.73, 773.02, all P<0.01). The prevalence rate of iron-deficiency anemia showed a significant statistical difference between urban and rural areas, 2.9% (251/8 577) vs. 4.6% (594/12 883) ( χ2=38.62, P<0.01), while the difference in iron deficiency prevalence was not significant ( χ2=0.51, P=0.476). Conclusions:There has been a notable improvement in iron deficiency and iron-deficiency anemia among preschool children in China, but the situation remains concerning. Particular attention should be paid to the prevention and control of iron deficiency and iron-deficiency anemia, especially among infants and children in the Central, Western, and Northeastern regions of China.
9.Background, design, and preliminary implementation of China prospective multicenter birth cohort
Si ZHOU ; Liping GUAN ; Hanbo ZHANG ; Wenzhi YANG ; Qiaoling GENG ; Niya ZHOU ; Wenrui ZHAO ; Jia LI ; Zhiguang ZHAO ; Xi PU ; Dan ZHENG ; Hua JIN ; Fei HOU ; Jie GAO ; Wendi WANG ; Xiaohua WANG ; Aiju LIU ; Luming SUN ; Jing YI ; Zhang MAO ; Zhixu QIU ; Shuzhen WU ; Dongqun HUANG ; Xiaohang CHEN ; Fengxiang WEI ; Lianshuai ZHENG ; Xiao YANG ; Jianguo ZHANG ; Zhongjun LI ; Qingsong LIU ; Leilei WANG ; Lijian ZHAO ; Hongbo QI
Chinese Journal of Perinatal Medicine 2024;27(9):750-755
China prospective multicenter birth cohort (Prospective Omics Health Atlas birth cohort, POHA birth cohort) study was officially launched in 2022. This study, in collaboration with 12 participating units, aims to establish a high-quality, multidimensional cohort comprising 20 000 naturally conceived families and assisted reproductive families. The study involves long-term follow-up of parents and offspring, with corresponding biological samples collected at key time points. Through multi-omics testing and analysis, the study aims to conduct multi-omics big data research across the entire maternal and infant life cycle. The goal is to identify new biomarkers for maternal and infant diseases and provide scientific evidence for risk prediction related to maternal diseases and neonatal health.
10.Pharmacological Effect of Phellodendri Chinensis Cortex and Active Components on Gout: A Review
Min LI ; Yunyun QUAN ; Ting WANG ; Li LI ; Jin ZENG ; Junning ZHAO ; Jiuzhou MAO ; Yangfan TANG ; Zhujun YIN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(1):286-298
Gout is a metabolic disease closely associated with hyperuricemia and urate deposition. Because of the complex pathogenesis, high morbidity, multiple complications, and increasingly young patients, gout has received worldwide attention. Currently, western medicine mainly treats gout by lowering the uric acid level and reducing inflammation, which, however, causes serious adverse reactions and has contraindications. Phellodendri Chinensis Cortex (PCC) is the dried bark of Phellodendron chinense, with the effects of clearing heat, drying dampness, purging fire, detoxifying, and treating sores. Studies have shown that PCC and its active components have anti-inflammatory, pain-relieving, uric acid-lowering, and anti-gout activities, with extensive sources and high safety. PCC and its active components could prevent and treat gout through multi-targets and multi-pathways, whereas the systematic review remains to be carried out. Therefore, this paper summarized the pharmacological activities and mechanisms of PCC and its active components in the treatment of gout. The available studies have shown that PCC and its active components exert the anti-gout effect by lowering the uric acid level, reducing inflammation, alleviating oxidative stress, and regulationg intestinal flora, and protecting the kidneys. Particularly, the active components represented by alkaloids contribute obviously to the therapeutic effect of of PCC. Herein, we analyzed the problems and future development of the research on PCC, aiming to provide theoretical support and a scientific basis for the research and development of new drugs against gout.

Result Analysis
Print
Save
E-mail