1.Safety of teriflunomide in Chinese adult patients with relapsing multiple sclerosis: A phase IV, 24-week multicenter study.
Chao QUAN ; Hongyu ZHOU ; Huan YANG ; Zheng JIAO ; Meini ZHANG ; Baorong ZHANG ; Guojun TAN ; Bitao BU ; Tao JIN ; Chunyang LI ; Qun XUE ; Huiqing DONG ; Fudong SHI ; Xinyue QIN ; Xinghu ZHANG ; Feng GAO ; Hua ZHANG ; Jiawei WANG ; Xueqiang HU ; Yueting CHEN ; Jue LIU ; Wei QIU
Chinese Medical Journal 2025;138(4):452-458
BACKGROUND:
Disease-modifying therapies have been approved for the treatment of relapsing multiple sclerosis (RMS). The present study aims to examine the safety of teriflunomide in Chinese patients with RMS.
METHODS:
This non-randomized, multi-center, 24-week, prospective study enrolled RMS patients with variant (c.421C>A) or wild type ABCG2 who received once-daily oral teriflunomide 14 mg. The primary endpoint was the relationship between ABCG2 polymorphisms and teriflunomide exposure over 24 weeks. Safety was assessed over the 24-week treatment with teriflunomide.
RESULTS:
Eighty-two patients were assigned to variant ( n = 42) and wild type groups ( n = 40), respectively. Geometric mean and geometric standard deviation (SD) of pre-dose concentration (variant, 54.9 [38.0] μg/mL; wild type, 49.1 [32.0] μg/mL) and area under plasma concentration-time curve over a dosing interval (AUC tau ) (variant, 1731.3 [769.0] μg∙h/mL; wild type, 1564.5 [1053.0] μg∙h/mL) values at steady state were approximately similar between the two groups. Safety profile was similar and well tolerated across variant and wild type groups in terms of rates of treatment emergent adverse events (TEAE), treatment-related TEAE, grade ≥3 TEAE, and serious adverse events (AEs). No new specific safety concerns or deaths were reported in the study.
CONCLUSION:
ABCG2 polymorphisms did not affect the steady-state exposure of teriflunomide, suggesting a similar efficacy and safety profile between variant and wild type RMS patients.
REGISTRATION
NCT04410965, https://clinicaltrials.gov .
Humans
;
Crotonates/adverse effects*
;
Toluidines/adverse effects*
;
Nitriles
;
Hydroxybutyrates
;
Female
;
Male
;
Adult
;
ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics*
;
Middle Aged
;
Multiple Sclerosis, Relapsing-Remitting/genetics*
;
Prospective Studies
;
Young Adult
;
Neoplasm Proteins/genetics*
;
East Asian People
2.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
3.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
4.Exploring the mechanism of lamotrigine in treatment of major depressive disorder based on network pharmacology,molecular docking,and Mendelian randomization
Jin-Sheng JIANG ; Hong-Ying CHEN ; Wei-Quan WANG ; Hai-Hong HU ; Yao CHEN ; Dong-Sheng OUYANG
The Chinese Journal of Clinical Pharmacology 2024;40(7):1068-1071
Objective To explore the mechanism of action of lamotrigine in the treatment of major depressive disorder(MDD).Methods Information on the drug targets of lamotrigine and the therapeutic targets of MDD were collected for intersection target gene analysis and protein-protein interaction screening.Various biological pathways related to lamotrigine in treatment of MDD were determined through gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis.The screened core targets were preliminarily validated using molecular docking technology.Further validation of Mendelian randomization was conducted using genome-wide association analysis data from gamma-aminobutyric acid recep tor-associated protein-like 1(GABARAPL1)and MDD in the OpenGWAS database.Results The biological pathways related to lamotrigine in treatment of MDD were identified,which included gamma-aminobutyric acid(GABA)ergic synapses,nicotine addiction,glutamatergic synapses,endogenous cannabinoid signaling.Molecular docking showed that the docking energy of lamotrigine with GABRA1,GABRB2,GABRA6,GABRD,GABRG2,GABRG1,GABRA5,GABRA4,GABRB3,and GABRA2 receptors was-5.8 kCal·mol-1.Among them,the GABRB3 receptor showed the strongest docking energy with lamotrigine,which was-9.5 kCal·mol-1.In the genome-wide association analysis data of GABARAPL1,303 single nucleotide polymorphisms were associated with GABARAPL1(P<5 × 106).15 single nucleotide polymorphisms were screened and retained for Mendelian randomization analysis,and the results showed that GABA receptors may be an important therapeutic target for MDD.Conclusion The treatment of MDD with lamotrigine may be achieved by acting on GABA receptors,which provided a research basis for the clinical application of lamotrigine in treating MDD.
5.Quercetin Alleviates Lipopolysaccharide-Induced Cardiac Inflammation via Inhibiting Autophagy and Programmed Cell Death
Hai Jin YU ; Liang Guo HU ; Quan Xiao GUO ; Bin Hua CAO ; Fei Zhao XIA ; Buhe AMIN
Biomedical and Environmental Sciences 2024;37(1):54-70
Objective The aim of this study is to explore the potential modulatory role of quercetin against Endotoxin or lipopolysaccharide (LPS) induced septic cardiac dysfunction.Methods Specific pathogen-free chicken embryos (n = 120) were allocated untreated control, phosphate buffer solution (PBS) vehicle, PBS with ethanol vehicle, LPS (500 ng/egg), LPS with quercetin treatment (10, 20, or 40 nmol/egg, respectively), Quercetin groups (10, 20, or 40 nmol/egg). Fifteen-day-old embryonated eggs were inoculated with abovementioned solutions via the allantoic cavity. At embryonic day 19, the hearts of the embryos were collected for histopathological examination, RNA extraction, real-time polymerase chain reaction, immunohistochemical investigations, and Western blotting.Results They demonstrated that the heart presented inflammatory responses after LPS induction. The LPS-induced higher mRNA expressions of inflammation-related factors (TLR4, TNFα, MYD88, NF-κB1, IFNγ, IL-1β, IL-8, IL-6, IL-10, p38, MMP3, and MMP9) were blocked by quercetin with three dosages. Quercetin significantly decreased immunopositivity to TLR4 and MMP9 in the treatment group when compared with the LPS group. Quercetin significantly decreased protein expressions of TLR4, IFNγ, MMP3, and MMP9 when compared with the LPS group. Quercetin treatment prevented LPS-induced increase in the mRNA expression of Claudin 1 and ZO-1, and significantly decreased protein expression of claudin 1 when compared with the LPS group. Quercetin significantly downregulated autophagy-related gene expressions (PPARα, SGLT1, APOA4, AMPKα1, AMPKα2, ATG5, ATG7, Beclin-1, and LC3B) and programmed cell death (Fas, Bcl-2, CASP1, CASP12, CASP3, and RIPK1) after LPS induction. Quercetin significantly decreased immunopositivity to APOA4, AMPKα2, and LC3-II/LC3-I in the treatment group when compared with the LPS group. Quercetin significantly decreased protein expressions of AMPKα1, LC3-I, and LC3-II. Quercetin significantly decreased the protein expression to CASP1 and CASP3 by immunohistochemical investigation or Western blotting in treatment group when compared with LPS group.Conclusion Quercetin alleviates cardiac inflammation induced by LPS through modulating autophagy, programmed cell death, and myocardiocytes permeability.
6. Effect of Qingshen granules on miR-23b and PINKl/Parkin pathway in rat NRK-52E cell transdifferentiation model
Hua JIN ; Lei ZHANG ; Yi-Ping WANG ; Hua JIN ; Ye-Qing ZHANG ; Qin HU ; Nuo CHEN ; Yan-Quan HAN
Chinese Pharmacological Bulletin 2024;40(1):162-170
Aim To investigate the targeting mechanism of miR-23b on PINKl/Parkin pathway in transdifferentiation of NRK-52E cellsinduced by TGF-β1, and to elucidate the intervention mechanism of Qingshen granules drug-containing serum on NRK-52E cell transdifferentiation. Methods Ultra-high performance liquid chromatography ( UPLC ) fingerprinting method was used to analyze Qingshen granules. The NRK-52E transdifferentiation model induced by TGF-β1 was constructed. The NRK-52E cells were divided into simulated no-load control group, miR-23b-5p simulated group, inhibitor no-load control group, and miR-23b-5p inhibitor group, after transfection with siRNA, and the effect of miR-23b-5p on PINK1 expression was ob-served. The NRK-52E cells were then divided into normal group, TGF-(31 group, Qingshen granule group, miR-23 b-mimic group, miR-23 b-mimic group, and miR-23b-mimic + Qingshen granule group. Western blot was used to detect the expression of Pinkl, Parkin, LC3 n, Beclin-1, P62 and a-SMA proteins, and RT- PCR was used to detect the expression of miR-23 b-5p, Pinkl, Parkin, Beclin-1 and a-SMA mRNA in NRK- 52E cells. Dual-Luciferase Reporter gene experiment was used to detect the targeting relationship between miR-23b-5p and PINKL Results UPLC fingerprinting method found 11 active components in Qingshen granules. After overexpression of miR-23b-5p, the expression of PINkl mRNA significantly increased (P < 0. 05). And after silencing of miR-23 b-5 p expression, the expression of PINkl mRNA also significantly decreased (P < 0. 05 ). Dual-Luciferase Reporter Assay showed that Rno-miR-23b-5p could significantly down- regulate the luciferase activity of Rno-PINKl-WT (P < 0. 05 ), but could not down-regulate the luciferase activity of mutant Rno-PINKl -mut ( P > 0. 05 ). The experimental results showed that the expressions of miR- 23b-5p, Pinkl, Parkin, Beclin-1, LC3 II and LC3 II/ I ratio in TGF-β1 group were significantly lower than those in normal group, but the expressions of P62 and a-SMA were significantly higher than those in normal group ( P <0.05). The expressions of miR-23 b-5 p, Pinkl, Parkin, Beclin-1, LC3 II and LC3 11/ I ratio in Qingshen granule group and miR-23 b-mimic group were significantly higher than those in TGF-β1 group, and the expressions of P62 and a-SMA were significantly lower than those in TGF-β1 group (P < 0. 05 ). The performance of miR-23 b-mimic + Qingshen granule group was better than that of miR-23 b-mimic group (P < 0. 05 ). Conclusions Qingshen granules can up- regulate the expression of miR-23b-5p in NRK-52E cellsand inhibit the transdifferentiation process of NRK- 52E cells by enhancing the mitochondrial autophagy activity mediated by PINKl/Parkin pathway.
7.A multi-center epidemiological study on pneumococcal meningitis in children from 2019 to 2020
Cai-Yun WANG ; Hong-Mei XU ; Gang LIU ; Jing LIU ; Hui YU ; Bi-Quan CHEN ; Guo ZHENG ; Min SHU ; Li-Jun DU ; Zhi-Wei XU ; Li-Su HUANG ; Hai-Bo LI ; Dong WANG ; Song-Ting BAI ; Qing-Wen SHAN ; Chun-Hui ZHU ; Jian-Mei TIAN ; Jian-Hua HAO ; Ai-Wei LIN ; Dao-Jiong LIN ; Jin-Zhun WU ; Xin-Hua ZHANG ; Qing CAO ; Zhong-Bin TAO ; Yuan CHEN ; Guo-Long ZHU ; Ping XUE ; Zheng-Zhen TANG ; Xue-Wen SU ; Zheng-Hai QU ; Shi-Yong ZHAO ; Lin PANG ; Hui-Ling DENG ; Sai-Nan SHU ; Ying-Hu CHEN
Chinese Journal of Contemporary Pediatrics 2024;26(2):131-138
Objective To investigate the clinical characteristics and prognosis of pneumococcal meningitis(PM),and drug sensitivity of Streptococcus pneumoniae(SP)isolates in Chinese children.Methods A retrospective analysis was conducted on clinical information,laboratory data,and microbiological data of 160 hospitalized children under 15 years old with PM from January 2019 to December 2020 in 33 tertiary hospitals across the country.Results Among the 160 children with PM,there were 103 males and 57 females.The age ranged from 15 days to 15 years,with 109 cases(68.1% )aged 3 months to under 3 years.SP strains were isolated from 95 cases(59.4% )in cerebrospinal fluid cultures and from 57 cases(35.6% )in blood cultures.The positive rates of SP detection by cerebrospinal fluid metagenomic next-generation sequencing and cerebrospinal fluid SP antigen testing were 40% (35/87)and 27% (21/78),respectively.Fifty-five cases(34.4% )had one or more risk factors for purulent meningitis,113 cases(70.6% )had one or more extra-cranial infectious foci,and 18 cases(11.3% )had underlying diseases.The most common clinical symptoms were fever(147 cases,91.9% ),followed by lethargy(98 cases,61.3% )and vomiting(61 cases,38.1% ).Sixty-nine cases(43.1% )experienced intracranial complications during hospitalization,with subdural effusion and/or empyema being the most common complication[43 cases(26.9% )],followed by hydrocephalus in 24 cases(15.0% ),brain abscess in 23 cases(14.4% ),and cerebral hemorrhage in 8 cases(5.0% ).Subdural effusion and/or empyema and hydrocephalus mainly occurred in children under 1 year old,with rates of 91% (39/43)and 83% (20/24),respectively.SP strains exhibited complete sensitivity to vancomycin(100% ,75/75),linezolid(100% ,56/56),and meropenem(100% ,6/6).High sensitivity rates were also observed for levofloxacin(81% ,22/27),moxifloxacin(82% ,14/17),rifampicin(96% ,25/26),and chloramphenicol(91% ,21/23).However,low sensitivity rates were found for penicillin(16% ,11/68)and clindamycin(6% ,1/17),and SP strains were completely resistant to erythromycin(100% ,31/31).The rates of discharge with cure and improvement were 22.5% (36/160)and 66.2% (106/160),respectively,while 18 cases(11.3% )had adverse outcomes.Conclusions Pediatric PM is more common in children aged 3 months to under 3 years.Intracranial complications are more frequently observed in children under 1 year old.Fever is the most common clinical manifestation of PM,and subdural effusion/emphysema and hydrocephalus are the most frequent complications.Non-culture detection methods for cerebrospinal fluid can improve pathogen detection rates.Adverse outcomes can be noted in more than 10% of PM cases.SP strains are high sensitivity to vancomycin,linezolid,meropenem,levofloxacin,moxifloxacin,rifampicin,and chloramphenicol.[Chinese Journal of Contemporary Pediatrics,2024,26(2):131-138]
8.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
9.Determining Disease Activity and Glucocorticoid Response in Thyroid-Associated Ophthalmopathy:Preliminary Study Using Dynamic Contrast-Enhanced MRI
Hao HU ; Xiong-Ying PU ; Jiang ZHOU ; Wen-Hao JIANG ; Qian WU ; Jin-Ling LU ; Fei-Yun WU ; Huan-Huan CHEN ; Xiao-Quan XU
Korean Journal of Radiology 2024;25(12):1070-1082
Objective:
To assess the role of dynamic contrast-enhanced (DCE)-MRI of the extraocular muscles (EOMs) for determining the activity of thyroid-associated ophthalmopathy (TAO) and treatment response to glucocorticoids (GCs).
Materials and Methods:
We prospectively enrolled 65 patients with TAO (41 active, 82 eyes; 24 inactive, 48 eyes). Twenty-two active patients completed the GC treatment and follow-up assessment, including 15 patients (30 eyes) and 7 patients (14 eyes), defined as responsive and unresponsive, respectively. Model-free (time to peak [TTP], area under the curve [AUC], and Slope max) and model-based (Ktrans , Kep, and Ve) parameters of EOMs in embedded simplified histogram analyses were calculated and compared between groups. Multivariable logistic regression analysis was used to identify the independent predictors. The area under the receiver operating characteristic curve (AUROC) was used to evaluate the diagnostic performance.
Results:
Active patients exhibited significantly higher TTP at the 10th percentile (-10th), TTP-mean, and TTP at the 90th percentile (-90th); AUC-10th, AUC-mean, AUC-90th, and AUC-max; Ktrans -10th and Ktrans -mean; and Ve-10th, Ve-mean, Ve-90th, and Ve-max than inactive patients (P < 0.05). Responsive patients exhibited significantly lower TTP-min; higher Ktrans -mean and Ktrans -max; and higher Kep-10th, Kep-mean, and Kep-max than unresponsive patients (P < 0.05). TTP-mean and Ve-mean were independent variables for determining disease activity (P = 0.017 and 0.022, respectively). A combination of the two parameters could determine active TAO with moderate performance (AUROC = 0.687). TTP-min and Ktrans -mean were independent predictors of the response to GCs (P = 0.023 and 0.004, respectively), uniting which could determine the response to GCs with decent performance (AUROC = 0.821).
Conclusion
DCE-MRI-derived model-free and model-based parameters of EOMs can assist in the evaluation of TAO. In particular, TTP-mean and Ve-mean could be useful for determining the activity of TAO, whereas TTP-min and K trans -mean could be promising biomarkers for determining the response to GCs.
10.Determining Disease Activity and Glucocorticoid Response in Thyroid-Associated Ophthalmopathy:Preliminary Study Using Dynamic Contrast-Enhanced MRI
Hao HU ; Xiong-Ying PU ; Jiang ZHOU ; Wen-Hao JIANG ; Qian WU ; Jin-Ling LU ; Fei-Yun WU ; Huan-Huan CHEN ; Xiao-Quan XU
Korean Journal of Radiology 2024;25(12):1070-1082
Objective:
To assess the role of dynamic contrast-enhanced (DCE)-MRI of the extraocular muscles (EOMs) for determining the activity of thyroid-associated ophthalmopathy (TAO) and treatment response to glucocorticoids (GCs).
Materials and Methods:
We prospectively enrolled 65 patients with TAO (41 active, 82 eyes; 24 inactive, 48 eyes). Twenty-two active patients completed the GC treatment and follow-up assessment, including 15 patients (30 eyes) and 7 patients (14 eyes), defined as responsive and unresponsive, respectively. Model-free (time to peak [TTP], area under the curve [AUC], and Slope max) and model-based (Ktrans , Kep, and Ve) parameters of EOMs in embedded simplified histogram analyses were calculated and compared between groups. Multivariable logistic regression analysis was used to identify the independent predictors. The area under the receiver operating characteristic curve (AUROC) was used to evaluate the diagnostic performance.
Results:
Active patients exhibited significantly higher TTP at the 10th percentile (-10th), TTP-mean, and TTP at the 90th percentile (-90th); AUC-10th, AUC-mean, AUC-90th, and AUC-max; Ktrans -10th and Ktrans -mean; and Ve-10th, Ve-mean, Ve-90th, and Ve-max than inactive patients (P < 0.05). Responsive patients exhibited significantly lower TTP-min; higher Ktrans -mean and Ktrans -max; and higher Kep-10th, Kep-mean, and Kep-max than unresponsive patients (P < 0.05). TTP-mean and Ve-mean were independent variables for determining disease activity (P = 0.017 and 0.022, respectively). A combination of the two parameters could determine active TAO with moderate performance (AUROC = 0.687). TTP-min and Ktrans -mean were independent predictors of the response to GCs (P = 0.023 and 0.004, respectively), uniting which could determine the response to GCs with decent performance (AUROC = 0.821).
Conclusion
DCE-MRI-derived model-free and model-based parameters of EOMs can assist in the evaluation of TAO. In particular, TTP-mean and Ve-mean could be useful for determining the activity of TAO, whereas TTP-min and K trans -mean could be promising biomarkers for determining the response to GCs.

Result Analysis
Print
Save
E-mail