1.Acer tegmentosum Maxim Prevents Bone Loss by Inhibiting Osteoclastogenesis and Promoting Osteoblast Mineralization in Ovariectomized Mice
Tae Woo OH ; Kwang-Il PARK ; Hyun Ju DO ; Kyungho KIM ; Hye Jin YANG ; Won Kyung CHO ; Jin Yeul MA
Natural Product Sciences 2020;26(1):83-89
Osteoporosis is a worldwide disease leading to significant economic and societal burdens globally. Osteoporosis is caused by unbalanced bone remodeling between the rate of osteoclast bone resorption and osteoblast bone formation. Acer tegmentosum Maxim (AT) is a traditional herbal medicine containing multiple biological activities such as anti-oxidant and anti-inflammatory purposes. However, its role in osteoporosis has not been fully studied. Therefore, we investigated whether AT has a potent inhibitory effect on osteoporosis and its mechanism through a systemic evaluation in ovariectomized (OVX) mice. OVX mice were orally administrated with the AT at doses of 50, 100, and 200 mg/kg for 10 weeks. Histological images and histomorphometry analyses were performed by H&E and Toluidine blue satin, and the expression levels of receptor activator for nuclear factor-kB ligand (RANKL), nuclear factor of activated T cells cytoplasm 1 (NFATc1), c-Fos, and matrix metalloproteinase 9 (MMP9) related to the osteoclast differentiation were investigated using immunohistochemical analysis. Administration of AT prevented bone loss and the alternations of osteoporotic bone parameters at the distinct regions of the distal femur and spongiosa region in OVX mice. Further, administration of AT increased periosteal bone formation in a dose-dependent manner. Meanwhile, AT inhibited not only the expression of NFATc1 and c-Fos, which are two major regulators of osteoclastogenesis but also reduced bone resorbed encoding expression of MMP9 and RANKL. Our results indicated that administration of AT prevented bone loss and the alternations of osteoporotic bone parameters at the distinct regions of the distal femur and spongiosa region in OVX mice. Also AT has the bone protective effect through the suppression of osteoclast and promotion of osteoblast, suggesting that it could be a preventive and therapeutic candidate for anti-osteoporosis.
2.Erratum.
Dong Hoon KWAK ; Jae Sung RYU ; Chang Hyun KIM ; Kisung KO ; Jin Yeul MA ; Kyung A HWANG ; Young Kug CHOO
Experimental & Molecular Medicine 2012;44(1):68-68
No abstract available.
3.Relationship between ganglioside expression and anti-cancer effects of the monoclonal antibody against epithelial cell adhesion molecule in colon cancer.
Dong Hoon KWAK ; Jae Sung RYU ; Chang Hyun KIM ; Kisung KO ; Jin Yeul MA ; Kyung A HWANG ; Young Kug CHOO
Experimental & Molecular Medicine 2011;43(12):693-701
The human colorectal carcinoma-associated GA733 antigen epithelial cell adhesion molecule (EpCAM) was initially described as a cell surface protein selectively expressed in some myeloid cancers. Gangliosides are sialic acid-containing glycosphingolipids involved in inflammation and oncogenesis. We have demonstrated that treatment with anti-EpCAM mAb and RAW264.7 cells significant inhibited the cell growth in SW620 cancer cells, but neither anti-EpCAM mAb nor RAW264.7 cells alone induced cytotoxicity. The relationship between ganglioside expression and the anti-cancer effects of anti-EpCAM mAb and RAW264.7 was investigated by high-performance thin-layer chromatography. The results demonstrated that expression of GM1 and GD1a significantly increased in the ability of anti-EpCAM to inhibit cell growth in SW620 cells. Anti-EpCAM mAb treatment increased the expression of anti-apoptotic proteins such as Bcl-2, but the expression of pro-apoptotic proteins Bax, TNF-alpha, caspase-3, cleaved caspase-3, and cleaved caspase-8 were unaltered. We observed that anti-EpCAM mAb significantly inhibited the growth of colon tumors, as determined by a decrease in tumor volume and weight. The expression of anti-apoptotic protein was inhibited by treatment with anti-EpCAM mAb, whereas the expression of pro-apoptotic proteins was increased. These results suggest that GD1a and GM1 were closely related to anticancer effects of anti-EpCAM mAb. In light of these results, further clinical investigation should be conducted on anti-EpCAM mAb to determine its possible chemopreventive and/or therapeutic efficacy against human colon cancer.
Animals
;
Antibodies, Monoclonal/*immunology/*therapeutic use
;
Antigens, Neoplasm/*immunology
;
Apoptosis/drug effects
;
Cell Adhesion Molecules/*immunology
;
Cell Line
;
Cell Line, Tumor
;
Cell Proliferation/drug effects
;
Colon/drug effects/immunology/metabolism/pathology
;
Colonic Neoplasms/*drug therapy/genetics/*immunology/pathology
;
Gangliosides/genetics/*immunology
;
Gene Expression Regulation, Neoplastic/drug effects
;
Humans
;
Male
;
Mice
;
Mice, Inbred BALB C