1.Unlocking the future: Machine learning sheds light on prognostication for early-stage hepatocellular carcinoma: Editorial on “Conventional and machine learning-based risk scores for patients with early-stage hepatocellular carcinoma”
Junlong DAI ; Jimmy Che-To LAI ; Grace Lai-Hung WONG ; Terry Cheuk-Fung YIP
Clinical and Molecular Hepatology 2024;30(4):698-701
2.The new definition of metabolic dysfunction-associated steatotic liver disease: the role of ultrasound and elastography
Xinrui JIN ; Terry Cheuk-Fung YIP ; Grace Lai-Hung WONG ; Vincent Wai-Sun WONG ; Jimmy Che-To LAI
Ultrasonography 2025;44(3):189-201
In 2023, nonalcoholic fatty liver disease was renamed metabolic dysfunction-associated steatotic liver disease by the American and European liver associations. This new nomenclature recognizes metabolic dysfunction as the central driver of the disease, and the diagnostic criteria now require the presence of hepatic steatosis plus at least one of five cardiometabolic risk factors. B-mode ultrasonography remains the most common and practical method for detecting hepatic steatosis, although newer ultrasound techniques based on attenuation, backscatter, and speed of sound have gained traction as tools to diagnose and quantify hepatic steatosis. Additionally, ultrasound elastography is increasingly used in routine clinical practice to assess liver fibrosis, diagnose cirrhosis, and identify clinically significant portal hypertension.
3.Role of noninvasive tests in the prognostication of metabolic dysfunction-associated steatotic liver disease
Yue WANG ; Sherlot Juan SONG ; Yichong JIANG ; Jimmy Che-To LAI ; Grace Lai-Hung WONG ; Vincent Wai-Sun WONG ; Terry Cheuk-Fung YIP
Clinical and Molecular Hepatology 2025;31(Suppl):S51-S75
In managing metabolic dysfunction-associated steatotic liver disease, which affects over 30% of the general population, effective noninvasive biomarkers for assessing disease severity, monitoring disease progression, predicting the development of liver-related complications, and assessing treatment response are crucial. The advantage of simple fibrosis scores lies in their widespread accessibility through routinely performed blood tests and extensive validation in different clinical settings. They have shown reasonable accuracy in diagnosing advanced fibrosis and good performance in excluding the majority of patients with a low risk of liver-related complications. Among patients with elevated serum fibrosis scores, a more specific fibrosis and imaging biomarker has proved useful to accurately identify patients at risk of liver-related complications. Among specific fibrosis blood biomarkers, enhanced liver fibrosis is the most widely utilized and has been approved in the United States as a prognostic biomarker. For imaging biomarkers, the availability of vibration-controlled transient elastography has been largely improved over the past years, enabling the use of liver stiffness measurement (LSM) for accurate assessment of significant and advanced fibrosis, and cirrhosis. Combining LSM with other routinely available blood tests enhances the ability to diagnose at-risk metabolic dysfunction-associated steatohepatitis and predict liver-related complications, some reaching an accuracy comparable to that of liver biopsy. Magnetic resonance imaging-based modalities provide the most accurate quantification of liver fibrosis, though the current utilization is limited to research settings. Expanding their future use in clinical practice depends on factors such as cost and facility availability.
4.The new definition of metabolic dysfunction-associated steatotic liver disease: the role of ultrasound and elastography
Xinrui JIN ; Terry Cheuk-Fung YIP ; Grace Lai-Hung WONG ; Vincent Wai-Sun WONG ; Jimmy Che-To LAI
Ultrasonography 2025;44(3):189-201
In 2023, nonalcoholic fatty liver disease was renamed metabolic dysfunction-associated steatotic liver disease by the American and European liver associations. This new nomenclature recognizes metabolic dysfunction as the central driver of the disease, and the diagnostic criteria now require the presence of hepatic steatosis plus at least one of five cardiometabolic risk factors. B-mode ultrasonography remains the most common and practical method for detecting hepatic steatosis, although newer ultrasound techniques based on attenuation, backscatter, and speed of sound have gained traction as tools to diagnose and quantify hepatic steatosis. Additionally, ultrasound elastography is increasingly used in routine clinical practice to assess liver fibrosis, diagnose cirrhosis, and identify clinically significant portal hypertension.
5.The new definition of metabolic dysfunction-associated steatotic liver disease: the role of ultrasound and elastography
Xinrui JIN ; Terry Cheuk-Fung YIP ; Grace Lai-Hung WONG ; Vincent Wai-Sun WONG ; Jimmy Che-To LAI
Ultrasonography 2025;44(3):189-201
In 2023, nonalcoholic fatty liver disease was renamed metabolic dysfunction-associated steatotic liver disease by the American and European liver associations. This new nomenclature recognizes metabolic dysfunction as the central driver of the disease, and the diagnostic criteria now require the presence of hepatic steatosis plus at least one of five cardiometabolic risk factors. B-mode ultrasonography remains the most common and practical method for detecting hepatic steatosis, although newer ultrasound techniques based on attenuation, backscatter, and speed of sound have gained traction as tools to diagnose and quantify hepatic steatosis. Additionally, ultrasound elastography is increasingly used in routine clinical practice to assess liver fibrosis, diagnose cirrhosis, and identify clinically significant portal hypertension.
6.Role of noninvasive tests in the prognostication of metabolic dysfunction-associated steatotic liver disease
Yue WANG ; Sherlot Juan SONG ; Yichong JIANG ; Jimmy Che-To LAI ; Grace Lai-Hung WONG ; Vincent Wai-Sun WONG ; Terry Cheuk-Fung YIP
Clinical and Molecular Hepatology 2025;31(Suppl):S51-S75
In managing metabolic dysfunction-associated steatotic liver disease, which affects over 30% of the general population, effective noninvasive biomarkers for assessing disease severity, monitoring disease progression, predicting the development of liver-related complications, and assessing treatment response are crucial. The advantage of simple fibrosis scores lies in their widespread accessibility through routinely performed blood tests and extensive validation in different clinical settings. They have shown reasonable accuracy in diagnosing advanced fibrosis and good performance in excluding the majority of patients with a low risk of liver-related complications. Among patients with elevated serum fibrosis scores, a more specific fibrosis and imaging biomarker has proved useful to accurately identify patients at risk of liver-related complications. Among specific fibrosis blood biomarkers, enhanced liver fibrosis is the most widely utilized and has been approved in the United States as a prognostic biomarker. For imaging biomarkers, the availability of vibration-controlled transient elastography has been largely improved over the past years, enabling the use of liver stiffness measurement (LSM) for accurate assessment of significant and advanced fibrosis, and cirrhosis. Combining LSM with other routinely available blood tests enhances the ability to diagnose at-risk metabolic dysfunction-associated steatohepatitis and predict liver-related complications, some reaching an accuracy comparable to that of liver biopsy. Magnetic resonance imaging-based modalities provide the most accurate quantification of liver fibrosis, though the current utilization is limited to research settings. Expanding their future use in clinical practice depends on factors such as cost and facility availability.
7.The new definition of metabolic dysfunction-associated steatotic liver disease: the role of ultrasound and elastography
Xinrui JIN ; Terry Cheuk-Fung YIP ; Grace Lai-Hung WONG ; Vincent Wai-Sun WONG ; Jimmy Che-To LAI
Ultrasonography 2025;44(3):189-201
In 2023, nonalcoholic fatty liver disease was renamed metabolic dysfunction-associated steatotic liver disease by the American and European liver associations. This new nomenclature recognizes metabolic dysfunction as the central driver of the disease, and the diagnostic criteria now require the presence of hepatic steatosis plus at least one of five cardiometabolic risk factors. B-mode ultrasonography remains the most common and practical method for detecting hepatic steatosis, although newer ultrasound techniques based on attenuation, backscatter, and speed of sound have gained traction as tools to diagnose and quantify hepatic steatosis. Additionally, ultrasound elastography is increasingly used in routine clinical practice to assess liver fibrosis, diagnose cirrhosis, and identify clinically significant portal hypertension.
8.Role of noninvasive tests in the prognostication of metabolic dysfunction-associated steatotic liver disease
Yue WANG ; Sherlot Juan SONG ; Yichong JIANG ; Jimmy Che-To LAI ; Grace Lai-Hung WONG ; Vincent Wai-Sun WONG ; Terry Cheuk-Fung YIP
Clinical and Molecular Hepatology 2025;31(Suppl):S51-S75
In managing metabolic dysfunction-associated steatotic liver disease, which affects over 30% of the general population, effective noninvasive biomarkers for assessing disease severity, monitoring disease progression, predicting the development of liver-related complications, and assessing treatment response are crucial. The advantage of simple fibrosis scores lies in their widespread accessibility through routinely performed blood tests and extensive validation in different clinical settings. They have shown reasonable accuracy in diagnosing advanced fibrosis and good performance in excluding the majority of patients with a low risk of liver-related complications. Among patients with elevated serum fibrosis scores, a more specific fibrosis and imaging biomarker has proved useful to accurately identify patients at risk of liver-related complications. Among specific fibrosis blood biomarkers, enhanced liver fibrosis is the most widely utilized and has been approved in the United States as a prognostic biomarker. For imaging biomarkers, the availability of vibration-controlled transient elastography has been largely improved over the past years, enabling the use of liver stiffness measurement (LSM) for accurate assessment of significant and advanced fibrosis, and cirrhosis. Combining LSM with other routinely available blood tests enhances the ability to diagnose at-risk metabolic dysfunction-associated steatohepatitis and predict liver-related complications, some reaching an accuracy comparable to that of liver biopsy. Magnetic resonance imaging-based modalities provide the most accurate quantification of liver fibrosis, though the current utilization is limited to research settings. Expanding their future use in clinical practice depends on factors such as cost and facility availability.
9.The new definition of metabolic dysfunction-associated steatotic liver disease: the role of ultrasound and elastography
Xinrui JIN ; Terry Cheuk-Fung YIP ; Grace Lai-Hung WONG ; Vincent Wai-Sun WONG ; Jimmy Che-To LAI
Ultrasonography 2025;44(3):189-201
In 2023, nonalcoholic fatty liver disease was renamed metabolic dysfunction-associated steatotic liver disease by the American and European liver associations. This new nomenclature recognizes metabolic dysfunction as the central driver of the disease, and the diagnostic criteria now require the presence of hepatic steatosis plus at least one of five cardiometabolic risk factors. B-mode ultrasonography remains the most common and practical method for detecting hepatic steatosis, although newer ultrasound techniques based on attenuation, backscatter, and speed of sound have gained traction as tools to diagnose and quantify hepatic steatosis. Additionally, ultrasound elastography is increasingly used in routine clinical practice to assess liver fibrosis, diagnose cirrhosis, and identify clinically significant portal hypertension.
10.U-shaped relationship between urea level and hepatic decompensation in chronic liver diseases
Huapeng LIN ; Grace Lai-Hung WONG ; Xinrong ZHANG ; Terry Cheuk-Fung YIP ; Ken LIU ; Yee Kit TSE ; Vicki Wing-Ki HUI ; Jimmy Che-To LAI ; Henry Lik-Yuen CHAN ; Vincent Wai-Sun WONG
Clinical and Molecular Hepatology 2022;28(1):77-90
Background/Aims:
We aimed to determine the association between blood urea level and incident cirrhosis, hepatic decompensation, and hepatocellular carcinoma in chronic liver disease (CLD) patients.
Methods:
The association between blood urea level and liver fibrosis/liver-related events were evaluated on continuous scale with restricted cubic spline curves based on generalized additive model or Cox proportional hazards models. Then, the above associations were evaluated by urea level within intervals.
Results:
Among 4,282 patients who had undergone liver stiffness measurement (LSM) by transient elastography, baseline urea level had a U-shaped association with LSM and hepatic decompensation development after a median follow-up of 5.5 years. Compared to patients with urea of 3.6–9.9 mmol/L, those with urea ≤3.5 mmol/L (adjusted hazard ratio [aHR], 4.15; 95% confidence interval [CI], 1.68–10.24) and ≥10 mmol/L (aHR, 5.22; 95% CI, 1.86–14.67) had higher risk of hepatic decompensation. Patients with urea ≤3.5 mmol/L also had higher risk of incident cirrhosis (aHR, 3.24; 95% CI, 1.50–6.98). The association between low urea level and incident cirrhosis and hepatic decompensation was consistently observed in subgroups by age, gender, albumin level, and comorbidities. The U-shaped relationship between urea level and LSM was validated in another population screening study (n=917). Likewise, urea ≤3.5 mmol/L was associated with a higher risk of incident cirrhosis in a territory-wide cohort of 12,476 patients with nonalcoholic fatty liver disease at a median follow-up of 9.9 years (aHR, 1.27; 95% CI, 1.03–1.57).
Conclusions
We identified a U-shaped relationship between the urea level and liver fibrosis/incident cirrhosis/hepatic decompensation in patients with CLD.