1.An echo state network algorithm based on recursive least square for electrocardiogram denoising.
Jieshuo ZHANG ; Ming LIU ; Xin LI ; Peng XIONG ; Xiuling LIU
Journal of Biomedical Engineering 2018;35(4):539-549
Electrocardiogram (ECG) is easily submerged in noise of the complex environment during remote medical treatment, and this affects the intelligent diagnosis of cardiovascular diseases. Considering this situation, this paper proposes an echo state network (ESN) denoising algorithm based on recursive least square (RLS) for ECG signals. The algorithm trains the ESN through the RLS method, and can automatically learn the deep nonlinear and differentiated characteristics in the noisy ECG data, and then the network can use these characteristic to separate out clear ECG signals automatically. In the experiment, the proposed method is compared with the wavelet transform with subband dependent threshold and the S-transform method by evaluating the signal-to-noise ratio and root mean square error. Experimental results show that the denoising accuracy is better and the low frequency component of the signal is well preserved. This method can effectively filter out complex noise and effectively preserve the effective information of ECG signals, which lays a foundation for the recognition of ECG signal feature waveform and the intelligent diagnosis of cardiovascular disease.
2.Detection of inferior myocardial infarction based on morphological characteristics.
Peng XIONG ; Mingrui QI ; Jieshuo ZHANG ; Ming LIU ; Zengguang HOU ; Hongrui WANG ; Xiuling LIU
Journal of Biomedical Engineering 2021;38(1):65-71
Early accurate detection of inferior myocardial infarction is an important way to reduce the mortality from inferior myocardial infarction. Regrading the existing problems in the detection of inferior myocardial infarction, complex model structures and redundant features, this paper proposed a novel inferior myocardial infarction detection algorithm. Firstly, based on the clinic pathological information, the peak and area features of QRS and ST-T wavebands as well as the slope feature of ST waveband were extracted from electrocardiogram (ECG) signals leads Ⅱ, Ⅲ and aVF. In addition, according to individual features and the dispersion between them, we applied genetic algorithm to make judgement and then input the feature with larger degree into support vector machine (SVM) to realize the accurate detection of inferior myocardial infarction. The proposed method in this paper was verified by Physikalisch-Technische Bundesanstalt (PTB) diagnostic electrocardio signal database and the accuracy rate was up to 98.33%. Conforming to the clinical diagnosis and the characteristics of specific changes in inferior myocardial infarction ECG signal, the proposed method can effectively make precise detection of inferior myocardial infarction by morphological features, and therefore is suitable to be applied in portable devices development for clinical promotion.
Algorithms
;
Databases, Factual
;
Electrocardiography
;
Humans
;
Inferior Wall Myocardial Infarction
;
Support Vector Machine
3.ST segment morphological classification based on support vector machine multi feature fusion.
Haiman DU ; Ting BIAN ; Peng XIONG ; Jianli YANG ; Jieshuo ZHANG ; Xiuling LIU
Journal of Biomedical Engineering 2022;39(4):702-712
ST segment morphology is closely related to cardiovascular disease. It is used not only for characterizing different diseases, but also for predicting the severity of the disease. However, the short duration, low energy, variable morphology and interference from various noises make ST segment morphology classification a difficult task. In this paper, we address the problems of single feature extraction and low classification accuracy of ST segment morphology classification, and use the gradient of ST surface to improve the accuracy of ST segment morphology multi-classification. In this paper, we identify five ST segment morphologies: normal, upward-sloping elevation, arch-back elevation, horizontal depression, and arch-back depression. Firstly, we select an ST segment candidate segment according to the QRS wave group location and medical statistical law. Secondly, we extract ST segment area, mean value, difference with reference baseline, slope, and mean squared error features. In addition, the ST segment is converted into a surface, the gradient features of the ST surface are extracted, and the morphological features are formed into a feature vector. Finally, the support vector machine is used to classify the ST segment, and then the ST segment morphology is multi-classified. The MIT-Beth Israel Hospital Database (MITDB) and the European ST-T database (EDB) were used as data sources to validate the algorithm in this paper, and the results showed that the algorithm in this paper achieved an average recognition rate of 97.79% and 95.60%, respectively, in the process of ST segment recognition. Based on the results of this paper, it is expected that this method can be introduced in the clinical setting in the future to provide morphological guidance for the diagnosis of cardiovascular diseases in the clinic and improve the diagnostic efficiency.
Algorithms
;
Arrhythmias, Cardiac
;
Databases, Factual
;
Electrocardiography/methods*
;
Humans
;
Support Vector Machine