1.Study on real-time monitoring and assessment of near-infrared in the dehydration treatment of traumatic brain injury.
Yumei JIA ; Zhiyu QIAN ; Weitao LI ; Jieru XIE
Journal of Biomedical Engineering 2014;31(4):861-874
We used near-infrared spectroscopy technology to monitor and assess the treatment effect of dehydrating agent in injured rat brain in real time style. We employed the brain edema model in rats resulting from Feeney' s freefall damage, then treated with different doses of mannitol, and collected reduced scattering coefficient (p',) and intracranial pressure (ICP) values after the injury and during the treatment. The results showed that brain edema happened 1 h after the injury in rats' brain tissue, peaked around 72 h after injury, and then began to decrease gradually. The reduced scattering coefficient and ICP values of the treatment group injected with mannitol all decreased after administration. Compared with the effect of low-dose mannitol treatment, that of high-dose mannitol treatment was much better. The duration of the plateau was longer and most experiments results declined significantly. From this we conclude that the reduced scattering coefficient and ICP are consistent with the trend changes, and the reduced scattering coefficient could be used as an indicator for monitoring cerebral edema.
Animals
;
Brain Edema
;
diagnosis
;
Brain Injuries
;
therapy
;
Dehydration
;
Diuretics, Osmotic
;
therapeutic use
;
Intracranial Pressure
;
Male
;
Mannitol
;
therapeutic use
;
Monitoring, Physiologic
;
Rats
;
Spectroscopy, Near-Infrared
2.Research on Optical Parameter along Puncture Path in Spinal Surgery Navigation Based on Near Infrared Spectroscopy.
Yuyan WANG ; Zhiyu QIAN ; Weitao LI ; Yangyang LIU ; Jieru XIE
Journal of Biomedical Engineering 2015;32(3):558-562
Accurate placement of pedicle screws is a key factor of spinal surgery. Investigation of a new real-time intra-operative monitoring method is an important area of clinical application research which makes a contribution to planting pedicle screw accurately. Porcine spines were chosen as experimental objects. The changes of reduced scattering coefficient (μ'(s)) along normal puncture path, medial perforation path and lateral perforation path were measured and studied. A conclusion is drawn that there are two distinct peaks throughout the puncture process, appearing at the junction of cancellous bone and cortical bone, at the beginning and at the end, respectively. The reduced scattering coefficient is proved to be a good monitoring factor which can identify whether the screw is about to reach the critical position of the spine puncture. Moreover, the variation provides an important reference for spinal surgical navigation process.
Animals
;
Biomedical Research
;
Bone Screws
;
Monitoring, Intraoperative
;
Punctures
;
Spectroscopy, Near-Infrared
;
Spine
;
surgery
;
Surgery, Computer-Assisted
;
Swine
3.A novel and low-toxic peptide DR3penA alleviates pulmonary fibrosis by regulating the MAPK/miR-23b-5p/AQP5 signaling axis.
Dan WANG ; Bochuan DENG ; Lu CHENG ; Jieru LI ; Jiao ZHANG ; Xiang ZHANG ; Xiaomin GUO ; Tiantian YAN ; Xin YUE ; Yingying AN ; Bangzhi ZHANG ; Wenle YANG ; Junqiu XIE ; Rui WANG
Acta Pharmaceutica Sinica B 2023;13(2):722-738
Pulmonary fibrosis (PF) is a pathological change caused by repeated injuries and repair dysfunction of the alveolar epithelium. Our previous study revealed that the residues Asn3 and Asn4 of peptide DR8 (DHNNPQIR-NH2) could be modified to improve stability and antifibrotic activity, and the unnatural hydrophobic amino acids α-(4-pentenyl)-Ala and d-Ala were considered in this study. DR3penA (DHα-(4-pentenyl)-ANPQIR-NH2) was verified to have a longer half-life in serum and to significantly inhibit oxidative damage, epithelial-mesenchymal transition (EMT) and fibrogenesis in vitro and in vivo. Moreover, DR3penA has a dosage advantage over pirfenidone through the conversion of drug bioavailability under different routes of administration. A mechanistic study revealed that DR3penA increased the expression of aquaporin 5 (AQP5) by inhibiting the upregulation of miR-23b-5p and the mitogen-activated protein kinase (MAPK) pathway, indicating that DR3penA may alleviate PF by regulating MAPK/miR-23b-5p/AQP5. Safety evaluation showed that DR3penA is a peptide drug without obvious toxicity or acute side effects and has significantly improved safety compared to DR8. Thus, our findings suggest that DR3penA, as a novel and low-toxic peptide, has the potential to be a leading compound for PF therapy, which provides a foundation for the development of peptide drugs for fibrosis-related diseases.