1.Strategies for demineralized dentin matrix protection and its research progress in dentin-resin bonding restoration
Mingxuan CAI ; Jing MAO ; Yifan WANG ; Jielin ZOU ; Xin SHI
Chinese Journal of Stomatology 2021;56(11):1144-1149
Both pathological injuries and clinical iatrogenic operations can lead to dentin demineralization, forming demineralized dentin matrix (DDM). Dentin demineralization activates endogenous matrix metalloproteinase (MMP) and cysteine cathepsin (CC), and the mechanical properties of DDM decrease, so DDM is prone to lose its structural integrity under the action of enzymatic degradation and mechanical destruction, which in turn results in the reduction of clinical functional value of DDM in dentin-resin bonding restoration. The administrations of dentin collagen cross-linking reagents and MMP/CC inhibitors are effective strategies to protect DDM structural integrity and achieve its clinical functional value. A variety of chemically synthesized reagents and plant-derived extracts are capable of significantly improving the mechanical properties of DDM and enhancing its enzymatic tolerance. However, the cytotoxicity caused by chemically synthesized reagents and the tooth staining aroused by plant extracts have considerably affected their clinical applicability. Protecting dentin collagen while exerting antibacterial properties is a new direction for future DDM protective agent research. Accordingly, from the perspectives of cross-linking reagents, enzyme inhibitors and compounds which possess the dual proper ties, this review discusses the latest research progress in DDM protection, and looks into its application prospects in dentin-resin bonding, in an attempt to provide reference for the clinical promotion of DDM protection strategy.
2.Applicatoin of chitosan-based hydrogel in oral tissue engineering.
Yujie WANG ; Jielin ZOU ; Mingxuan CAI ; Yifan WANG ; Jing MAO ; Xin SHI
Journal of Central South University(Medical Sciences) 2023;48(1):138-147
Pulpitis, periodontitis, jaw bone defect, and temporomandibular joint damage are common oral and maxillofacial diseases in clinic, but traditional treatments are unable to restore the structure and function of the injured tissues. Due to their good biocompatibility, biodegradability, antioxidant effect, anti-inflammatory activity, and broad-spectrum antimicrobial property, chitosan-based hydrogels have shown broad applicable prospects in the field of oral tissue engineering. Quaternization, carboxymethylation, and sulfonation are common chemical modification strategies to improve the physicochemical properties and biological functions of chitosan-based hydrogels, while the construction of hydrogel composite systems via carrying porous microspheres or nanoparticles can achieve local sequential delivery of diverse drugs or bioactive factors, laying a solid foundation for the well-organized regeneration of defective tissues. Chemical cross-linking is commonly employed to fabricate irreversible permanent chitosan gels, and physical cross-linking enables the formation of reversible gel networks. Representing suitable scaffold biomaterials, several chitosan-based hydrogels transplanted with stem cells, growth factors or exosomes have been used in an attempt to regenerate oral soft and hard tissues. Currently, remarkable advances have been made in promoting the regeneration of pulp-dentin complex, cementum-periodontium-alveolar bone complex, jaw bone, and cartilage. However, the clinical translation of chitosan-based hydrogels still encounters multiple challenges. In future, more in vivo clinical exploration under the conditions of oral complex microenvironments should be performed, and the combined application of chitosan-based hydrogels and a variety of bioactive factors, biomaterials, and state-of-the-art biotechnologies can be pursued in order to realize multifaceted complete regeneration of oral tissue.
Chitosan/chemistry*
;
Tissue Engineering
;
Hydrogels/chemistry*
;
Biocompatible Materials/chemistry*
;
Cartilage
;
Tissue Scaffolds/chemistry*