1.Rubioncolin C targets cathepsin D to induce autophagosome accumulation and suppress gastric cancer.
Liang ZHANG ; Jun-Jie CHEN ; Man-Xiang GU ; Yi-Fan ZHONG ; Yuan SI ; Ying LIU
China Journal of Chinese Materia Medica 2025;50(5):1267-1275
This study aimed to explore the molecular mechanism of rubioncolin C(RuC) in inhibiting gastric cancer(GC). AGS and MGC803 cell lines were selected as cellular models. After treating the cells with RuC at different concentrations, the effects of RuC on the proliferation ability of GC cells were assessed using the CCK-8 method, real-time cellular analysis(RTCA), and colony formation assays. Transmission electron microscopy was used to observe subcellular structural changes. Immunofluorescence was applied to detect LC3 fluorescent foci. Acridine orange staining was used to evaluate the state of intracellular lysosomes. Western blot was employed to detect the expression of autophagy-related proteins LC3Ⅱ, P62, and lysosomal cathepsin D(CTSD). The SuperPred online tool was used to predict the target proteins that bound to RuC, and molecular docking analysis was conducted to identify the interaction sites between RuC and CTSD. The drug affinity responsive target stability(DARTS) assay was performed to detect the direct binding interaction between RuC and CTSD. The results showed that RuC significantly inhibited the proliferation and colony formation of GC cells at low concentrations, with 24-hour half-maximal inhibitory concentrations(IC_(50)) of 3.422 and 2.697 μmol·L~(-1) for AGS and MGC803 cells, respectively. After 24 hours of treatment with RuC at concentrations of 1, 2, and 3 μmol·L~(-1), the colony formation rates for AGS cells were 61.0%±1.5%, 28.0%±0.5%, and 18.2%±0.5%, respectively, while the rates for MGC803 cells were 56.0%±0.5%, 23.3%±1.0%, and 11.8%±1.0%, all of which were significantly reduced. Transmission electron microscopy revealed that RuC promoted an increase in autophagosome formation in GC cells. Immunofluorescence detection showed that LC3 fluorescent foci of GC cells increased with the increase in RuC dose. RuC up-regulated the expression of autophagy-related proteins LC3Ⅱ and P62 in GC cells. Acridine orange staining indicated that RuC altered the acidic environment of lysosomes. SuperPred online prediction identified CTSD as a potential target protein of RuC. Western blot analysis revealed that RuC induced the up-regulation of the inactive precursor of CTSD in GC cells. CTSD activity assays indicated that RuC reduced the activity of CTSD. Molecular docking simulations found that RuC bound to the substrate-binding region of CTSD, forming hydrogen bonds with the Tyr205 and Asp231 residues. Microscale thermophoresis and DARTS assays further confirmed that RuC directly bound to CTSD. In summary, RuC inhibits lysosomal activity by targeting and down-regulating the expression of CTSD, thereby inducing autophagosome accumulation in GC cells.
Humans
;
Stomach Neoplasms/enzymology*
;
Cathepsin D/chemistry*
;
Cell Line, Tumor
;
Molecular Docking Simulation
;
Cell Proliferation/drug effects*
;
Autophagosomes/metabolism*
;
Autophagy/drug effects*
2.Professor YANG Zhong-qi's prescription patterns for hypertension based on latent structure model and association rule analysis.
Hui-Lin LIU ; Shi-Hao NI ; Xiao-Jiao ZHANG ; Wen-Jie LONG ; Xiao-Ming DONG ; Zhi-Ying LIU ; Hui-Li LIAO ; Zhong-Qi YANG
China Journal of Chinese Materia Medica 2025;50(10):2865-2874
Based on latent structure model and association rule analysis, this study investigates the prescription patterns used by professor YANG Zhong-qi in treating hypertension with traditional Chinese medicine(TCM) and infers the associated TCM syndromes, providing a reference for clinical syndrome differentiation and treatment. The observation window spanned from January 8, 2013, to June 26, 2024, during which qualified herbal decoction prescriptions meeting efficacy criteria were extracted from the outpatient medical record system of the First Affiliated Hospital of Guangzhou University of Chinese Medicine and compiled into a standardized database. Statistical analysis of high-frequency herbs included frequency counts and herbal property-channel tropism analysis. Latent structure modeling and association rule analysis were performed using R 4.3.2 and Lantern 5.0 software to identify core herbal combinations and infer TCM syndrome patterns. A total of 2 436 TCM prescriptions were included in the study, involving 263 drugs with a cumulative frequency of 29 783. High-frequency herbs comprised Uncariae Ramulus cum Uncis, Poria, Glycyrrhizae Radix et Rhizoma, Puerariae Lobatae Radix, and Alismatis Rhizoma, predominantly categorized as deficiency-tonifying, heat-clearing, and blood-activating and stasis-resolving herbs. Latent structure analysis identified 18 latent variables, 74 latent classes, 5 comprehensive clustering models, and 15 core herbal combinations, suggesting that the core syndrome clusters include liver Yang hyperactivity pattern, Yin deficiency with Yang hyperactivity pattern, phlegm-stasis intermingling pattern, and liver-kidney insufficiency pattern. Association rule analysis revealed 22 robust association rules. RESULTS:: indicate that hypertension manifests as a deficiency-rooted excess manifestation, significantly associated with functional dysregulation of the liver, lung, spleen-stomach, heart, and kidney. Key pathogenic mechanisms involve liver Yang hyperactivity, phlegm-stasis interaction, and liver-kidney insufficiency. Therapeutic strategies should prioritize liver-calming, spleen-fortifying, and deficiency-tonifying principles, supplemented by dynamic regulation of Qi-blood and Yin-Yang balance according to syndrome evolution, alongside pathogen-eliminating methods such as phlegm-resolving and stasis-dispelling. Synergistic interventions like mind-tranquilizing therapies should be tailored to individual conditions.
Hypertension/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Humans
;
Medicine, Chinese Traditional
;
Drug Prescriptions
;
Latent Class Analysis
3.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans
4.Control of massive hemorrhage from the presacral venous plexus during the surgery of pelvic fracture using woven gelatin sponge balls:a case report.
Zhi-Jie XI ; Xiang-Bin LIU ; Wei-Xin LI ; Shu-Zhong HUANG ; Jie LI ; Wen SHU ; Zhan-Ying SHI
China Journal of Orthopaedics and Traumatology 2025;38(7):755-758
5.A small molecule cryptotanshinone induces non-enzymatic NQO1-dependent necrosis in cancer cells through the JNK1/2/Iron/PARP/calcium pathway.
Ying HOU ; Bingling ZHONG ; Lin ZHAO ; Heng WANG ; Yanyan ZHU ; Xianzhe WANG ; Haoyi ZHENG ; Jie YU ; Guokai LIU ; Xin WANG ; Jose M MARTIN-GARCIA ; Xiuping CHEN
Acta Pharmaceutica Sinica B 2025;15(2):991-1006
Human NAD(P)H: quinone oxidoreductase 1 (NQO1) is a flavoenzyme expressed at high levels in multiple solid tumors, making it an attractive target for anticancer drugs. Bioactivatable drugs targeting NQO1, such as β-lapachone (β-lap), are currently in clinical trials for the treatment of cancer. β-Lap selectively kills NQO1-positive (NQO1+) cancer cells by inducing reactive oxygen species (ROS) via catalytic activation of NQO1. In this study, we demonstrated that cryptotanshinone (CTS), a naturally occurring compound, induces NQO1-dependent necrosis without affecting NQO1 activity. CTS selectively kills NQO1+ cancer cells by inducing NQO1-dependent necrosis. Interestingly, CTS directly binds to NQO1 but does not activate its catalytic activity. In addition, CTS enables activation of JNK1/2 and PARP, accumulation of iron and Ca2+, and depletion of ATP and NAD+. Furthermore, CTS selectively suppressed tumor growth in the NQO1+ xenograft models, which was reversed by NQO1 inhibitor and NQO1 shRNA. In conclusion, CTS induces NQO1-dependent necrosis via the JNK1/2/iron/PARP/NAD+/Ca2+ signaling pathway. This study demonstrates the non-enzymatic function of NQO1 in inducing cell death and provides new avenues for the design and development of NQO1-targeted anticancer drugs.
6.Pathogenicity and Transcriptomic Profiling Revealed Activation of Apoptosis and Pyroptosis in Brain of Mice Infected with the Beta Variant of SARS-CoV-2.
Han LI ; Bao Ying HUANG ; Gao Qian ZHANG ; Fei YE ; Li ZHAO ; Wei Bang HUO ; Zhong Xian ZHANG ; Wen WANG ; Wen Ling WANG ; Xiao Ling SHEN ; Chang Cheng WU ; Wen Jie TAN
Biomedical and Environmental Sciences 2025;38(9):1082-1094
OBJECTIVE:
Patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection frequently develop central nervous system damage, yet the mechanisms driving this pathology remain unclear. This study investigated the primary pathways and key factors underlying brain tissue damage induced by the SARS-CoV-2 beta variant (lineage B.1.351).
METHODS:
K18-hACE2 and C57BL/6 mice were intranasally infected with the SARS-CoV-2 beta variant. Viral replication, pathological phenotypes, and brain transcriptomes were analyzed. Gene Ontology (GO) analysis was performed to identify altered pathways. Expression changes of host genes were verified using reverse transcription-quantitative polymerase chain reaction and Western blot.
RESULTS:
Pathological alterations were observed in the lungs of both mouse strains. However, only K18-hACE2 mice exhibited elevated viral RNA loads and infectious titers in the brain at 3 days post-infection, accompanied by neuropathological injury and weight loss. GO analysis of infected K18-hACE2 brain tissue revealed significant dysregulation of genes associated with innate immunity and antiviral defense responses, including type I interferons, pro-inflammatory cytokines, Toll-like receptor signaling components, and interferon-stimulated genes. Neuroinflammation was evident, alongside activation of apoptotic and pyroptotic pathways. Furthermore, altered neural cell marker expression suggested viral-induced neuroglial activation, resulting in caspase 4 and lipocalin 2 release and disruption of neuronal molecular networks.
CONCLUSION
These findings elucidate mechanisms of neuropathogenicity associated with the SARS-CoV-2 beta variant and highlight therapeutic targets to mitigate COVID-19-related neurological dysfunction.
Animals
;
COVID-19/genetics*
;
Mice
;
Brain/metabolism*
;
Apoptosis
;
Mice, Inbred C57BL
;
SARS-CoV-2/physiology*
;
Pyroptosis
;
Gene Expression Profiling
;
Transcriptome
;
Male
;
Female
7.Cloning and interacted protein identification of AP1 homologous gene from Lonicera macranthoides
Ya-xin YU ; Li-jun LONG ; Chang-zhu LI ; Hui-jie ZENG ; Zhong-quan QIAO ; Si-si LIU ; Ying-zi MA
Acta Pharmaceutica Sinica 2024;59(10):2880-2888
The
8.The taste correction process of ibuprofen oral solution based on the combination of electronic tongue technology and artificial taste comprehensive evaluation
Rui YUAN ; Yun-ping QU ; Yan WANG ; Ya-xuan ZHANG ; Wan-ling ZHONG ; Xiao-yu FAN ; Hui-juan SHEN ; Yun-nan MA ; Jin-hong YE ; Jie BAI ; Shou-ying DU
Acta Pharmaceutica Sinica 2024;59(8):2404-2411
This experiment aims to study the taste-masking effects of different kinds of corrigent used individually and in combination on ibuprofen oral solution, in order to optimize the taste-masking formulation. Firstly, a wide range of corrigent and the mass fractions were extensively screened using electronic tongue technology. Subsequently, a combination of sensory evaluation, analytic hierarchy process (AHP)-fuzzy mathematics evaluation, and Box-Behnken experimental design were employed to comprehensively assess the taste-masking effects of different combinations of corrigent on ibuprofen oral solution, optimize the taste-masking formulation, and validate the results. The study received ethical approval from the Review Committee of the Beijing University of Chinese Medicine (ethical code: 2024BZYLL0102). The results showed that corrigent fractions and types were screened separately through single-factor experiments. Subsequently, a Box-Behnken response surface design combined with AHP and fuzzy mathematics evaluation was used to fit a functional model:
9.Serological analysis of anti-K and anti-Wra detected in patient treated with daratumumab: a case report
Xian HUANG ; Ying ZHAO ; Tongtong LI ; Yang YANG ; Lei MA ; Jinhui JIE ; Jinghui ZHONG
Chinese Journal of Blood Transfusion 2024;37(4):466-470
【Objective】 To investigate the reasonable serological detection method by analyzing the characteristics of anti-K and anti-Wra from a patient who received treatment with daratumumab. 【Methods】 Unexpected antibody screening and identification were performed by saline method, polybrene, cardioagglutinin, dithiothreitol (DTT) treatment, trypsin treatment and papain treatment in the patient's plasma and acid elution solution. Heat elution test was detected after absorbing patient serum with K antigen negative red blood cells. The characteristics of antibodies were analyzed and their titer was continuously detected. Cross matching was performed after excluding interference of daratumumab. 【Results】 Anti-K and anti-Wra were detected in saline and polybrene in the patient's plasma. The patient's elution solution contained daratumumab. DTT or trypsin treatment excluded interference of daratumumab but papain treatment did not. DTT treatment destroyed K antigen and missed the detection of IgG antibodies in the Kell system. Trypsin treatment did not affect K antigen and can detect IgG antibodies of Kell system(anti-k)in the serum of the patient treated with daratumumab. Anti K was IgM and the titer was 4 by saline method and it decreased to no agglutination in room temperature after 39 days. Anti-Wra was IgG and the titer by polybrene method was 4, and it decreased to 1 after 39 days. After 76 days, neither anti-K nor anti-Wra could be detected. Transfusions of K and Wra antigen negative red blood cells were safe and effective. 【Conclusion】 DTT treatment can exclude interference of daratumumab, but attention should be paid to missed detection of anti-K. To avoid interference of daratumumab and identify unexpected antibody, multiple methods such as DTT treatment, polybrene and trypsin treatment in combination are recommended.
10.Effect of catgut implantation at acupoint on the learning and memory function and hippocampal microangiogenesis in vascular dementia rats
Yun-Zheng LI ; Qiu-Ying SUN ; Zhong-Sheng TANG ; Shi-Jie ZHU
Acta Anatomica Sinica 2024;55(2):150-157
Objective To observe the effect of catgut implantation at acupoint(CIAA)on the learning and memory function,hippocampal microangiogenesis,and the mRNA and protein expression of angiopoietin-1(Ang-1)/vascular endothelialgrowth factor(VEGF)and its receptor TEK tyrosine kinase(TIE2)/VEGF receptor 2(VEGFR2)in rats with vascular dementia(VD).To explore the mechanism of catgut implantation at acupoint in preventing and treating VD.Methods Using a random number table,VD rats were divided into a model group,a nimodipine group,and an catgut implantation at acupoint group,and a sham operation group was set up,with 10 rats in each group.On the 7th day after surgery,the treatment groups were given catgut implantation at acupoint and nimodipine gastric lavage for 21 days.After treatment,Morris water maze behavioral test was performed.HE staining was used to observe hippocampal CA1 tissue.CD34 immunohistochemical staining was used to detect hippocampal microvascular density(MVD).Real-time PCR and Western blotting were used to detect the mRNA and protein expression of Ang-1/VEGF and its receptor TIE2/VEGFR2 in the hippocampus.Results Compared with the model group,the average escape latency of the other groups was significantly shortened,and the target quadrant residence time was significantly prolonged(P<0.01,P<0.05).Compared with the model group,the number of nucleolus and well-formed pyramidal cells in hippocampal CA1 area of the catgut implantation at acupoint group and the nimodipine group increased in varying degrees,and they were arranged more closely,with only a few cells scattered and swollen.In the sham surgery group,a few CD34 positive cells were scattered.The treatment groups had more closely distributed CD34 positive cells with significant staining compared to the model group.The MVD of the model group was significantly higher than that of the sham surgery group(P<0.01).Both nimodipine group and catgut implantation at acupoint group had higher MVD than the model group(P<0.05,P<0.01).Compared with the sham surgery group,the mRNA and protein expression of Ang-1/VEGF and its receptor TIE2/VEGFR2 in the model group increased significantly(P<0.01,P<0.05).Compared with the model group,both nimodipine group and catgut implantation at acupoint group had higher mRNA and protein expression of Ang-1/VEGF and its receptor TIE2/VEGFR2(P<0.01,P<0.05).Conclusion Catgut implantation at acupoint can improve the learning and memory abilities in VD rats,promote hippocampal microvascular angiogenesis,which may be related to the up-regulation of Ang-1/VEGF and its receptor TIE2/VEGFR2 mRNA and protein expression.

Result Analysis
Print
Save
E-mail