1.High Expression of INF2 Predicts Poor Prognosis and Promotes Hepatocellular Carcinoma Progression
Hai-Biao WANG ; Man LIN ; Fu-Sang YE ; Jia-Xin SHI ; Hong LI ; Meng YE ; Jie WANG
Progress in Biochemistry and Biophysics 2025;52(1):194-208
ObjectiveINF2 is a member of the formins family. Abnormal expression and regulation of INF2 have been associated with the progression of various tumors, but the expression and role of INF2 in hepatocellular carcinoma (HCC) remain unclear. HCC is a highly lethal malignant tumor. Given the limitations of traditional treatments, this study explored the expression level, clinical value and potential mechanism of INF2 in HCC in order to seek new therapeutic targets. MethodsIn this study, we used public databases to analyze the expression of INF2 in pan-cancer and HCC, as well as the impact of INF2 expression levels on HCC prognosis. Quantitative real time polymerase chain reaction (RT-qPCR), Western blot, and immunohistochemistry were used to detect the expression level of INF2 in liver cancer cells and human HCC tissues. The correlation between INF2 expression and clinical pathological features was analyzed using public databases and clinical data of human HCC samples. Subsequently, the effects of INF2 expression on the biological function and Drp1 phosphorylation of liver cancer cells were elucidated through in vitro and in vivo experiments. Finally, the predictive value and potential mechanism of INF2 in HCC were further analyzed through database and immunohistochemical experiments. ResultsINF2 is aberrantly high expression in HCC samples and the high expression of INF2 is correlated with overall survival, liver cirrhosis and pathological differentiation of HCC patients. The expression level of INF2 has certain diagnostic value in predicting the prognosis and pathological differentiation of HCC. In vivo and in vitro HCC models, upregulated expression of INF2 triggers the proliferation and migration of the HCC cell, while knockdown of INF2 could counteract this effect. INF2 in liver cancer cells may affect mitochondrial division by inducing Drp1 phosphorylation and mediate immune escape by up-regulating PD-L1 expression, thus promoting tumor progression. ConclusionINF2 is highly expressed in HCC and is associated with poor prognosis. High expression of INF2 may promote HCC progression by inducing Drp1 phosphorylation and up-regulation of PD-L1 expression, and targeting INF2 may be beneficial for HCC patients with high expression of INF2.
2.Research progress of antifungal drugs from natural sources
Shao-jie CHU ; Yan ZHENG ; Shuang-shuang SU ; Xue-song WU ; Hong YAN ; Shao-xin CHEN ; Hong-bo WANG
Acta Pharmaceutica Sinica 2025;60(1):48-57
As the number of patients with compromised immune function increases and fungal resistance develops, so does the risk of contracting deadly fungi in humans. Both fungi and humans are eukaryotes, so identifying unique targets for antifungal drug development is difficult. In addition, the existing antifungal drugs are limited by toxicity, drug interaction and drug resistance in practical application, which leads to the increasing incidence and fatal rate of fungal infections. Therefore, it is urgent to develop new antifungal drugs. The semi-synthetic technology using microbial fermentation products from natural sources as lead compounds has become the most used method in structural modification of antifungal drugs due to its advantages of few reaction steps and easy operation. This paper will introduce the current status of natural antifungal drugs in clinical use, as well as the latest progress in the research and development of new semi-synthetic antifungal drugs, and summarize their mechanism of action, structural modifications, advantages and disadvantages, so as to provide reference for the subsequent development of new antifungal drugs.
3.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
4.Network Meta-analysis of efficacy of different Chinese medicine injections in treating transient ischemic attack.
Jin HAN ; Yong-Kang SUN ; Yue YUAN ; Fang-Biao XU ; Yan-Bo SONG ; Wei-Jie WANG ; Xin-Zhi WANG
China Journal of Chinese Materia Medica 2025;50(8):2282-2297
This study aims to evaluate the efficacy of Chinese medicine injections in treating transient ischemic attack(TIA) based on network Meta-analysis. Randomized controlled trial(RCT) about Chinese medicine injections in treating TIA were retrieved from PubMed, Web of Science, Cochrane Library, EMbase, CNKI, VIP, Wanfang, and SinoMed with the time interval from inception to March 1, 2024. The methodological quality of the included articles was assessed by ROB 2.0, and the GRADE system was employed to evaluate the quality of evidence. The gemtc package of R 4.1.2 was used to perform the network Meta-analysis. Finally, 63 RCTs with a total sample size of 5 750 cases were included, involving 11 Chinese medicine injections(Shuxuetong Injection, Danhong Injection, Shuxuening Injection, Ginkgo Damo Injection, Shenxiong Glucose Injection, Ligustrazine Injection, Salviae Miltiorrhizae and Ligustrazine Hydrochloride Injection, Salvianolic Acids for Injection, Dengzhan Xixin Injection, Guhong Injection, and Xueshuantong Injection). All patients received conventional western medicine treatment, and the experimental group was additionally treated with Chinese medicine injection. Network Meta-analysis yielded the following results.(1) In terms of improving the clinical total response rate, 11 Chinese medicine injections combined with conventional western medicine outperformed conventional western medicine alone, and Dengzhan Xixin Injection + conventional western medicine had the best effect.(2) In terms of reducing plasma viscosity, 7 Chinese medicine injections combined with conventional western medicine outperformed conventional western medicine alone, and Shenxiong Glucose Injection + conventional western medicine had the best effect.(3) In terms of reducing whole blood high shear viscosity, 6 Chinese medicine injections combined with conventional western medicine outperformed conventional western medicine alone, and Guhong Injection + conventional western medicine had the best effect.(4) In terms of reducing whole blood low shear viscosity, 6 Chinese medicine injections combined with conventional western medicine outperformed conventional western medicine alone, and Shuxuening Injection + conventional western medicine had the best effect.(5) In terms of reducing fibrinogen, 9 Chinese medicine injections combined with conventional western medicine outperformed conventional western medicine alone, and Ginkgo Damo Injection + conventional western medicine had the best effect.(6) In terms of increasing the average blood flow velocity, 3 Chinese medicine injections combined with conventional western medicine outperformed conventional western medicine alone, and Shuxuening Injection + conventional western medicine had the best effect. In summary, compared with conventional western medicine alone, Chinese medicine injections combined with conventional western medicine were effective in improving the clinical total response rate and the average blood flow velocity, as well as reducing plasma viscosity, whole blood high shear viscosity, whole blood low shear viscosity, and fibrinogen. However, due to the limited quality and quantity of the included articles, the above conclusions need to be verified by more high-quality, multi-center, and large-sample RCT.
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Injections
;
Ischemic Attack, Transient/drug therapy*
;
Randomized Controlled Trials as Topic
;
Treatment Outcome
5.Studies on common irritant components in three different base sources of Polygonati Rhizoma.
Yu-Xin GU ; Hong-Li YU ; Min SHEN ; Xin-Zhi WANG ; Kui-Long WANG ; Jie CAO ; Qian-Lin CHEN ; Yan-Qing XU ; Chang-Li SHEN ; Hao WU
China Journal of Chinese Materia Medica 2025;50(12):3223-3231
To explore the common irritant components in different base sources of Polygonati Rhizoma(PR). A rabbit eye irritation experiment was conducted to compare the irritant effects of raw products of Polygonatum kingianum, P. officinale, and P. multiflorum. The irritant effects of different solvent extraction parts and needle crystals of PR were compared, and the irritant components were screened. The morphology and structure of the purified needle crystal of PR were observed by microscope and scanning electron microscope and characterized by X-ray diffraction. Rabbit eye irritation and mouse abdominal inflammation model were used to evaluate rabbit eye irritation scores, inflammatory mediators, inflammatory factors levels in the peritoneal exudate of mice, with the peritoneal pathological section used as indicators. The inflammatory effect of needle crystals of PR was studied, and the content of calcium oxalate in three kinds of PR was determined by HPLC. The common protein in three kinds of PR was screened and compared by double enzymatic hydrolysis in solution combined with mass spectrometry. The results showed that three kinds of PR raw products had certain irritant effects on rabbit eyes, among which P. kingianum had the strongest irritant effect. There were no obvious irritant effects in the different solvent extraction parts of P. kingianum. Compared with the blank group, the needle crystal of PR had a significant irritant effect on rabbit eyes, and the inflammatory mediators and inflammatory factors in the peritoneal exudate were significantly increased(P<0.05) in a dose-dependent manner. Meanwhile, the peritoneal tissue of mice was damaged with significant inflammatory cell infiltration after intraperitoneal injection of needle crystal, indicating that needle crystal had an inflammatory effect. Microscope and scanning electron microscope observations showed that the needle crystals of PR were slender, with a length of about 100-200 μm and sharp ends. X-ray diffraction analysis showed that the needle crystals of PR were calcium oxalate monohydrate crystals. The results of HPLC showed that the content of calcium oxalate in P. kingianum was the highest among the three kinds of PR. It was speculated that the content of needle crystal in P. kingianum was higher than that in P. officinale and P. multiflorum, which was consistent with the results of the rabbit eye irritation experiment. The results of mass spectrometry showed that ribosome inactivating protein and mannose/sialic acid binding lectin were related to inflammation and cell metabolism in all three kinds of PR. There was no obvious irritant effect in different solvent extracts of PR. The calcium oxalate needle crystal contained was the main irritant component of PR, and three kinds of PR contained common ribosome inactivating protein and mannose/sialic acid binding lectin, which may be related to the inflammatory irritant effect of PR.
Animals
;
Rabbits
;
Mice
;
Polygonatum/chemistry*
;
Drugs, Chinese Herbal/toxicity*
;
Rhizome/chemistry*
;
Male
;
Eye/drug effects*
;
Female
;
Humans
6.Mechanism of Maxiong Powder in inhibiting Epac1-Piezo2 signaling pathway in medial habenular nucleus-interpeduncular nucleus of rats with neuropathic pain.
Xin-Yuan WANG ; Zhi CHEN ; Ying LIU ; Jian SUN ; Ru-Jie LI ; Zhi-Guo WANG ; Mei-Yu ZHANG
China Journal of Chinese Materia Medica 2025;50(10):2719-2729
Central sensitization(CS) is an important factor in inducing neuropathic pain(NPP), and the association between signal transduction protein 1(Epac1) and piezoelectric type mechanosensitive ion channel component 2(Piezo2) is a new and significant pathway for initiating CS. This study whether the central analgesic effect of Maxiong Powder is achieved through the synchronized regulation of the Epac1-Piezo2 signaling pathway in the medial habenular nucleus(MHb) and interpeduncular nucleus(IPN) of the brain. Dynamic in vivo microdialysis, combined with high-performance liquid chromatography-fluorescence detection(HPLC-RFC), behavioral assessments, immunohistochemistry, Western blot, and quantitative reverse transcription PCR, were employed in rats with partial sciatic nerve injury(SNI) to investigate the distribution and expression of Epac1 and Piezo2 proteins and genes in the MHb and IPN regions, and the changes in the extracellular levels of glutamate(Glu), aspartic acid(Asp), and glycine(Gly). Compared with the sham group, rats in the SNI group showed significantly reduced analgesic activity, a significant increase in cold pain sensitivity scores, and elevated Glu levels in the MHb and IPN regions. Additionally, the number of Piezo2-positive cells in these regions, as well as the expression levels of Epac1 and Piezo2 proteins and genes, were significantly increased. Compared with the SNI group, after Maxiong Powder administration, the analgesic activity in rats significantly increased, and cold pain sensitivity scores were significantly reduced. Maxiong Powder also significantly decreased the Glu content in the MHb and IPN regions and the Gly content in the MHb region, while significantly increasing the Asp content in both regions. Furthermore, Maxiong Powder significantly reduced the number of Piezo2-positive cells and lowered the protein and gene expression levels of Epac1 and Piezo2 in both brain regions. The central analgesic effect of Maxiong Powder may be related to its inhibition of Glu and Gly release in the extracellular fluid of the MHb and IPN regions, the increase of Asp levels in these regions, and the regulation of the Epac1-Piezo2 pathway through the reduction of Epac1 and Piezo2 protein and gene expression. These results provide partial scientific evidence for the clinical analgesic efficacy of Maxiong Powder and offer new ideas and approaches for the clinical treatment of NPP.
Animals
;
Neuralgia/genetics*
;
Rats
;
Signal Transduction/drug effects*
;
Male
;
Rats, Sprague-Dawley
;
Guanine Nucleotide Exchange Factors/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Habenula/drug effects*
;
Ion Channels/genetics*
;
Humans
7.Identification of tissue distribution components and mechanism of antipyretic effect of famous classical formula Dayuanyin.
Yu-Jie HOU ; Kang-Ning XIAO ; Jian-Yun BI ; Xin-Rui LI ; Ming SU ; Li-Jie WANG ; Yu-Qing WANG ; Dan-Dan SUN ; Hui ZHANG ; Xin-Jun ZHANG ; Shan-Xin LIU
China Journal of Chinese Materia Medica 2025;50(10):2810-2824
Based on the ultra performance liquid chromatography-quadrupole Exactive Orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) technology, combined with related literature, databases, and reference material information, this study qualitatively analyzed the components of Dayuanyin in the tissue of rats after gavage and employed molecular docking technology to predict the rationality of the mechanism behind the antipyretic effect of the in vivo components in Dayuanyin. A total of 21, 26, 20, 21, 14, and 31 prototype components and 3, 16, 3, 7, 5, and 24 metabolites were identified from the heart, liver, spleen, lung, kidney, and hypothalamus of the rats, respectively, and the binding ability of key components and targets was further verified by molecular docking. The results showed that all components had good binding ability with targets. The established UPLC-Q-Exactive Orbitrap-MS could effectively and quickly identify the Dayuanyin components distributed in tissue and preliminarily identify their metabolites. Many components were identified in the hypothalamus, which suggested that the components delivered to the brain should be focused on in the study on Dayuanyin in the treatment of febrile diseases. The molecular docking technology was used to predict the rationality of the mechanism behind its antipyretic effect, which lays the foundation for the clarification of the material basis and action mechanism of Dayuanyin, the development of new preparations, and the prediction of quality markers.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Molecular Docking Simulation
;
Male
;
Antipyretics/metabolism*
;
Rats, Sprague-Dawley
;
Tissue Distribution
;
Mass Spectrometry
;
Chromatography, High Pressure Liquid
;
Hypothalamus/metabolism*
8.A new nor-clerodane diterpenoid from Croton lauioides.
Hao-Xin WANG ; Wen-Hao DU ; Hong-Xi XIE ; Lin CHEN ; Jun-Jie HAO ; Zhi-Yong JIANG
China Journal of Chinese Materia Medica 2025;50(11):3049-3053
The chemical constituents of the chloroform extract of the 90% methanol extract obtained from the dried branches and leaves of Croton lauioides were investigated. By using silica gel column chromatography, C_(18 )column chromatography, MCI column chromatography, and semi-preparative high-performance liquid chromatography(HPLC), six compounds were isolated. Their structures were identified as lauioidine(1), 2α-methoxy-8α-hydroxy-6-oxogermacra-1(10),7(11)-dien-8,12-olide(2), myrrhanolide B(3), gossweilone(4), 6β,7β-epox-4α-hydroxyguaian-10-ene(5), and 4(15)-eudesmane-1β,5α-diol(6) by analyzing the HR-ESI-MS, IR, ECD, 1D NMR and 2D NMR data, as well as their physicochemical properties. All compounds were isolated from C. lauioides for the first time, among which compound 1 is a new nor-clerodane diterpenoid.
Croton/chemistry*
;
Diterpenes, Clerodane/isolation & purification*
;
Molecular Structure
;
Drugs, Chinese Herbal/isolation & purification*
;
Magnetic Resonance Spectroscopy
;
Chromatography, High Pressure Liquid
9.Tetrahydropalmatine acts on α7nAChR to regulate inflammation and polarization of BV2 microglia.
Yan-Jun WANG ; Guo-Liang DAI ; Pei-Yao CHEN ; Hua-Xi HANG ; Xin-Fang BIAN ; Yu-Jie CHEN ; Wen-Zheng JU
China Journal of Chinese Materia Medica 2025;50(11):3117-3126
Based on the α7 nicotinic acetylcholine receptor(α7nAChR), this study examined how tetrahydropalmatine(THP) affected BV2 microglia exposed to lipopolysaccharide(LPS), aiming to clarify the possible mechanism underlying the anti-depression effect of THP from the perspectives of preventing inflammation and regulating polarization. First, after molecular docking and determination of the content of Corydalis saxicola Bunting total alkaloids, THP was initially identified as a possible anti-depression component. The BV2 microglia model of inflammation was established with LPS. BV2 microglia were allocated into a normal group, a model group, low-and high-dose(20 and 40 μmol·L~(-1), respectively) THP groups, and a THP(20 μmol·L~(-1))+α7nAChR-specific antagonist MLA(1 μmol·L~(-1)) group. The CCK-8 assay was used to screen the safe concentration of THP. A light microscope was used to examine the morphology of the cells. Western blot and immunofluorescence were used to determine the expression of α7nAChR. qRT-PCR was performed to determine the mRNA levels of inducible nitric oxide synthase(iNOS), cluster of differentiation 86(CD86), suppressor of cytokine signaling 3(SOCS3), arginase-1(Arg-1), cluster of differentiation 206(CD206), tumor necrosis factor(TNF)-α, interleukin(IL)-6, and IL-1β. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. The experimental results showed that THP at concentrations of 40 μmol·L~(-1) and below had no effect on BV2 microglia. THP improved the morphology of BV2 microglia, significantly up-regulated the protein level of α7nAChR, significantly down-regulated the mRNA levels of iNOS, CD86, SOCS3, TNF-α, IL-6, and IL-1β, significantly up-regulated the mRNA levels of Arg-1 and CD206, and dramatically lowered the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. However, the antagonist MLA abolished the above-mentioned ameliorative effects of THP on LPS-treated BV2 microglia. As demonstrated by the aforementioned findings, THP protected LPS-treated BV2 microglia by regulating the M1/M2 polarization and preventing inflammation, which might be connected to the regulation of α7nAChR on BV2 microglia.
Berberine Alkaloids/chemistry*
;
alpha7 Nicotinic Acetylcholine Receptor/chemistry*
;
Microglia/metabolism*
;
Mice
;
Animals
;
Cell Line
;
Corydalis/chemistry*
;
Humans
;
Molecular Docking Simulation
;
Inflammation/drug therapy*
;
Nitric Oxide Synthase Type II/immunology*
;
Tumor Necrosis Factor-alpha/immunology*
10.4'-O-methylbavachalcone improves vascular cognitive impairment by inhibiting neuroinflammation via EPO/Nrf2/HO-1 pathway.
Xin-Yuan ZHANG ; Chen WANG ; Hong-Qing CHEN ; Xiang-Bing ZENG ; Jun-Jie WANG ; Qing-Guang ZHANG ; Jin-Wen XU ; Shuang LING
China Journal of Chinese Materia Medica 2025;50(14):3990-4002
This study aims to explore the effects and mechanisms of 4'-O-methylbavachalcone(MeBavaC), an active compound from Psoraleae Fructus, in regulating white matter neuroinflammation to improve vascular cognitive impairment. Male Sprague-Dawley(SD) rats were randomly divided into four groups: sham group, model group, high-dose MeBavaC group(14 mg·kg~(-1)), and low-dose MeBavaC group(7 mg·kg~(-1)). The rat model of chronic cerebral hypoperfusion(CCH) was established using bilateral common carotid artery occlusion. The Morris water maze test was performed to evaluate the learning and memory abilities of the rats. Luxol fast blue staining, Nissl staining, immunofluorescence, immunohistochemistry, and transmission electron microscopy were utilized to observe the morphology and ultrastructure of the white matter myelin sheaths, axon integrity, the morphology and number of hippocampal neurons, and the loss and activation of glial cells in the white matter. Transcriptome analysis was performed to explore the potential mechanisms of white matter injury induced by CCH. Western blot and quantitative real-time polymerase chain reaction(qRT-PCR) assays were conducted to measure the expression levels of NOD-like receptor protein 3(NLRP3), absent in melanoma 2(AIM2), gasdermin D(GSDMD), cysteinyl aspartate-specific proteinase-1(caspase-1), interleukin-18(IL-18), interleukin-1β(IL-1β), erythropoietin(EPO), nuclear factor erythroid 2-related factor 2(Nrf2), and heme oxygenase-1(HO-1) in the white matter of rats. The results showed that compared with the model group, MeBavaC significantly improved the learning and memory abilities of rats with CCH, improved the damage of white matter myelin sheath, maintained axonal integrity, reduced the loss of hippocampal neurons and oligodendrocytes in the white matter, inhibited the activation of microglia and the proliferation of astrocytes in the white matter, and suppressed the NLRP3/AIM2/caspase-1/GSDMD pathway. The expression levels of inflammatory cytokines IL-1β and IL-18 were significantly reduced, while EPO expression and the expression of Nrf2/HO-1 antioxidant pathway were notably elevated. In conclusion, MeBavaC can alleviate cognitive impairment in rats with CCH and suppress neuroinflammation in cerebral white matter. The mechanism of action may involve activation of EPO activity, promotion of endogenous antioxidant pathways, and inhibition of neuroinflammation in the white matter. This study suggests that MeBavaC exhibits antioxidant and anti-neuroinflammatory effects, showing potential application in improving cognitive dysfunction.
Animals
;
Male
;
Rats, Sprague-Dawley
;
NF-E2-Related Factor 2/immunology*
;
Rats
;
Chalcones/administration & dosage*
;
Cognitive Dysfunction/metabolism*
;
Signal Transduction/drug effects*
;
Neuroinflammatory Diseases/drug therapy*
;
Heme Oxygenase-1/metabolism*
;
Humans
;
Heme Oxygenase (Decyclizing)/genetics*

Result Analysis
Print
Save
E-mail