1.Bone loss in patients with spinal cord injury: Incidence and influencing factors.
Min JIANG ; Jun-Wei ZHANG ; He-Hu TANG ; Yu-Fei MENG ; Zhen-Rong ZHANG ; Fang-Yong WANG ; Jin-Zhu BAI ; Shu-Jia LIU ; Zhen LYU ; Shi-Zheng CHEN ; Jie-Sheng LIU ; Jia-Xin FU
Chinese Journal of Traumatology 2025;28(6):477-484
PURPOSE:
To investigate the incidence and influencing factors of bone loss in patients with spinal cord injury (SCI).
METHODS:
A retrospective case-control study was conducted. Patients with SCI in our hospital from January 2019 to March 2023 were collected. According to the correlation between bone mineral density (BMD) at different sites, the patients were divided into the lumbar spine group and the hip joint group. According to the BMD value, the patients were divided into the normal bone mass group (t > -1.0 standard deviation) and the osteopenia group (t ≤ -1.0 standard deviation). The influencing factors accumulated as follows: gender, age, height, weight, cause of injury, injury segment, injury degree, time after injury, start time of rehabilitation, motor score, sensory score, spasticity, serum value of alkaline phosphatase, calcium, and phosphorus. The trend chart was drawn and the influencing factors were analyzed. SPSS 26.0 was used for statistical analysis. Correlation analysis was used to test the correlation between the BMD values of the lumbar spine and bilateral hips. Binary logistic regression analysis was used to explore the influencing factors of osteoporosis after SCI. p < 0.05 was considered statistically significant.
RESULTS:
The incidence of bone loss in patients with SCI was 66.3%. There was a low concordance between bone loss in the lumbar spine and the hip, and the hip was particularly susceptible to bone loss after SCI, with an upward trend in incidence (36% - 82%). In this study, patients with SCI were divided into the lumbar spine group (n = 100) and the hip group (n = 185) according to the BMD values of different sites. Then, the lumbar spine group was divided into the normal bone mass group (n = 53) and the osteopenia group (n = 47); the hip joint group was divided into the normal bone mass group (n = 83) and the osteopenia group (n = 102). Of these, lumbar bone loss after SCI is correlated with gender and weight (p = 0.032 and < 0.001, respectively), and hip bone loss is correlated with gender, height, weight, and time since injury (p < 0.001, p = 0.015, 0.009, and 0.012, respectively).
CONCLUSIONS
The incidence of bone loss after SCI was high, especially in the hip. The incidence and influencing factors of bone loss in the lumbar spine and hip were different. Patients with SCI who are male, low height, lightweight, and long time after injury were more likely to have bone loss.
Humans
;
Spinal Cord Injuries/complications*
;
Male
;
Female
;
Retrospective Studies
;
Incidence
;
Adult
;
Bone Density
;
Middle Aged
;
Case-Control Studies
;
Osteoporosis/etiology*
;
Lumbar Vertebrae
;
Bone Diseases, Metabolic/etiology*
;
Aged
;
Risk Factors
2.A preclinical evaluation and first-in-man case for transcatheter edge-to-edge mitral valve repair using PulveClip® transcatheter repair device.
Gang-Jun ZONG ; Jie-Wen DENG ; Ke-Yu CHEN ; Hua WANG ; Fei-Fei DONG ; Xing-Hua SHAN ; Jia-Feng WANG ; Ni ZHU ; Fei LUO ; Peng-Fei DAI ; Zhi-Fu GUO ; Yong-Wen QIN ; Yuan BAI
Journal of Geriatric Cardiology 2025;22(2):265-269
3.A high clinically translatable strategy to anti-aging using hyaluronic acid and silk fibroin co-crosslinked hydrogels as dermal regenerative fillers.
Jialing CHENG ; Zhiyang CHEN ; Demin LIN ; Yanfang YANG ; Yanjing BAI ; Lingshuang WANG ; Jie LI ; Yuchen WANG ; Hongliang WANG ; Youbai CHEN ; Jun YE ; Yuling LIU
Acta Pharmaceutica Sinica B 2025;15(7):3767-3787
An ideal dermal filler should integrate filling, repair, and anti-aging effects, with immediate tissue augmentation, slow degradation, and progressive stimulation of collagen regeneration. However, commonly used hyaluronic acid (HA) hydrogels, while effective for rapid filling, suffer from limited duration of support, weak cell adhesion, and an inability to promote collagen regeneration. Silk fibroin (SF), a natural protein from silkworm cocoons, is known for its excellent cell adhesion and collagen-stimulating abilities. However, its limited gelation capability restricts its potential application as a standalone injectable hydrogel. Based on a complementary strategy, this study combines the rapid gelling properties of HA with the collagen regenerative properties of SF to create a co-crosslinked HA-SF hydrogel. The composite hydrogel merges HA's rapid filling effect with SF's strong tissue adhesion and collagen-stimulating abilities. The formulation, physicochemical properties, degradation, biocompatibility, and filling effects of the HA-SF hydrogel were systematically investigated. HA-SF hydrogel exhibits excellent mechanical properties and ensures long-term support while maintaining injectability. Interestingly, after intradermal injection in the UVB-induced photoaging model, HA-SF hydrogel not only enhances hydrogel-cell interaction but also continues to stimulate collagen regeneration, especially type III collagen. This dual action achieves the biological effects of repair and anti-aging while maintaining the filling effect. Proteomic analysis confirms that repair and anti-aging effects are enhanced by the regulation of skin fibroblasts and modulation of amino acid and lipid metabolism. This composite hydrogel holds strong promise for clinical applications, offering a safer, long-lasting, and more natural injectable filler that combines filling, repair, and anti-aging into one system.
4.Expert consensus on orthodontic treatment of protrusive facial deformities.
Jie PAN ; Yun LU ; Anqi LIU ; Xuedong WANG ; Yu WANG ; Shiqiang GONG ; Bing FANG ; Hong HE ; Yuxing BAI ; Lin WANG ; Zuolin JIN ; Weiran LI ; Lili CHEN ; Min HU ; Jinlin SONG ; Yang CAO ; Jun WANG ; Jin FANG ; Jiejun SHI ; Yuxia HOU ; Xudong WANG ; Jing MAO ; Chenchen ZHOU ; Yan LIU ; Yuehua LIU
International Journal of Oral Science 2025;17(1):5-5
Protrusive facial deformities, characterized by the forward displacement of the teeth and/or jaws beyond the normal range, affect a considerable portion of the population. The manifestations and morphological mechanisms of protrusive facial deformities are complex and diverse, requiring orthodontists to possess a high level of theoretical knowledge and practical experience in the relevant orthodontic field. To further optimize the correction of protrusive facial deformities, this consensus proposes that the morphological mechanisms and diagnosis of protrusive facial deformities should be analyzed and judged from multiple dimensions and factors to accurately formulate treatment plans. It emphasizes the use of orthodontic strategies, including jaw growth modification, tooth extraction or non-extraction for anterior teeth retraction, and maxillofacial vertical control. These strategies aim to reduce anterior teeth and lip protrusion, increase chin prominence, harmonize nasolabial and chin-lip relationships, and improve the facial profile of patients with protrusive facial deformities. For severe skeletal protrusive facial deformities, orthodontic-orthognathic combined treatment may be suggested. This consensus summarizes the theoretical knowledge and clinical experience of numerous renowned oral experts nationwide, offering reference strategies for the correction of protrusive facial deformities.
Humans
;
Orthodontics, Corrective/methods*
;
Consensus
;
Malocclusion/therapy*
;
Patient Care Planning
;
Cephalometry
5.Expert consensus on the prevention and treatment of enamel demineralization in orthodontic treatment.
Lunguo XIA ; Chenchen ZHOU ; Peng MEI ; Zuolin JIN ; Hong HE ; Lin WANG ; Yuxing BAI ; Lili CHEN ; Weiran LI ; Jun WANG ; Min HU ; Jinlin SONG ; Yang CAO ; Yuehua LIU ; Benxiang HOU ; Xi WEI ; Lina NIU ; Haixia LU ; Wensheng MA ; Peijun WANG ; Guirong ZHANG ; Jie GUO ; Zhihua LI ; Haiyan LU ; Liling REN ; Linyu XU ; Xiuping WU ; Yanqin LU ; Jiangtian HU ; Lin YUE ; Xu ZHANG ; Bing FANG
International Journal of Oral Science 2025;17(1):13-13
Enamel demineralization, the formation of white spot lesions, is a common issue in clinical orthodontic treatment. The appearance of white spot lesions not only affects the texture and health of dental hard tissues but also impacts the health and aesthetics of teeth after orthodontic treatment. The prevention, diagnosis, and treatment of white spot lesions that occur throughout the orthodontic treatment process involve multiple dental specialties. This expert consensus will focus on providing guiding opinions on the management and prevention of white spot lesions during orthodontic treatment, advocating for proactive prevention, early detection, timely treatment, scientific follow-up, and multidisciplinary management of white spot lesions throughout the orthodontic process, thereby maintaining the dental health of patients during orthodontic treatment.
Humans
;
Consensus
;
Dental Caries/etiology*
;
Dental Enamel/pathology*
;
Tooth Demineralization/etiology*
;
Tooth Remineralization
6.Expert consensus on early orthodontic treatment of class III malocclusion.
Xin ZHOU ; Si CHEN ; Chenchen ZHOU ; Zuolin JIN ; Hong HE ; Yuxing BAI ; Weiran LI ; Jun WANG ; Min HU ; Yang CAO ; Yuehua LIU ; Bin YAN ; Jiejun SHI ; Jie GUO ; Zhihua LI ; Wensheng MA ; Yi LIU ; Huang LI ; Yanqin LU ; Liling REN ; Rui ZOU ; Linyu XU ; Jiangtian HU ; Xiuping WU ; Shuxia CUI ; Lulu XU ; Xudong WANG ; Songsong ZHU ; Li HU ; Qingming TANG ; Jinlin SONG ; Bing FANG ; Lili CHEN
International Journal of Oral Science 2025;17(1):20-20
The prevalence of Class III malocclusion varies among different countries and regions. The populations from Southeast Asian countries (Chinese and Malaysian) showed the highest prevalence rate of 15.8%, which can seriously affect oral function, facial appearance, and mental health. As anterior crossbite tends to worsen with growth, early orthodontic treatment can harness growth potential to normalize maxillofacial development or reduce skeletal malformation severity, thereby reducing the difficulty and shortening the treatment cycle of later-stage treatment. This is beneficial for the physical and mental growth of children. Therefore, early orthodontic treatment for Class III malocclusion is particularly important. Determining the optimal timing for early orthodontic treatment requires a comprehensive assessment of clinical manifestations, dental age, and skeletal age, and can lead to better results with less effort. Currently, standardized treatment guidelines for early orthodontic treatment of Class III malocclusion are lacking. This review provides a comprehensive summary of the etiology, clinical manifestations, classification, and early orthodontic techniques for Class III malocclusion, along with systematic discussions on selecting early treatment plans. The purpose of this expert consensus is to standardize clinical practices and improve the treatment outcomes of Class III malocclusion through early orthodontic treatment.
Humans
;
Malocclusion, Angle Class III/classification*
;
Orthodontics, Corrective/methods*
;
Consensus
;
Child
7.Computer modeling: prediction of the release curve of oral sustained-release tablets
Xiao CHEN ; Hai-hua ZHENG ; Xin-tong PAN ; Bai XIANG ; Zhen-hua PAN ; Yun-jie DANG
Acta Pharmaceutica Sinica 2024;59(6):1593-1600
Sustained and controlled release preparation is ideal for reducing the side effects of drugs, improving patient compliance and enhancing efficacy, among which oral sustained-release tablets are the most widely used. The
8.Anti-glioblastoma study of YHP-836, a novel PARP1/2 inhibitor, in combination with temozolomide
Jia-ling DENG ; Ting-ting DU ; Jie ZHOU ; Bai-ling XU ; Xiao-guang CHEN ; Ming JI
Acta Pharmaceutica Sinica 2024;59(6):1656-1663
The aim of this study was to investigate and evaluate the antitumor effects of a novel poly(ADP-ribose) polymerase (PARP) 1/2 inhibitor, YHP-836, in combination with temozolomide (TMZ) for the treatment of glioblastoma (GBM). The cytotoxicity of YHP-836 was tested alone or in combination with TMZ using MTT assay. Immunoblotting and flow cytometry were also employed to assess the combination activity of YHP-836 and TMZ in multiply GBM cell lines. Further, the antitumor activity of YHP-836 and TMZ was evaluated using subcutaneous and orthotopic mice xenograft tumor models. All procedures were approved by the Ethics Committee for Animal Experiments of the Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and conducted under the Guidelines for Animal Experiments of Peking Union Medical College. The approval number is 00009138. It was demonstrated that the combination of YHP-836 and TMZ increased the cytotoxicity against GBM cells and upregulated histone H2AX phosphorylation (
9.Four new dammarane-type triterpenoid saponins from Gynostemma pentaphyllum (Thunb.) Makino
Guang YANG ; Hai-zhen LIANG ; Jie ZHANG ; Xiao-juan CHEN ; Bao-lin GUO ; Bai-ping MA
Acta Pharmaceutica Sinica 2024;59(8):2288-2294
Damarane-type triterpene saponins are the main active ingredients in
10.The Influence of Developmental Dyslexia-associated Gene KIAA0319 on Brain Development——From Animals to Humans
Jie CHEN ; Xiao-Yun YU ; Yi-Ming YANG ; Jian-E BAI
Progress in Biochemistry and Biophysics 2024;51(6):1305-1315
Developmental dyslexia (DD) is a prevalent learning disorder, and the KIAA0319 gene is a DD-associated gene, potentially affecting reading ability by influencing brain development. This review provides an overview of the impact of KIAA0319 gene on brain development in fish, non-primate mammals, primate mammals, and humans. In studies involving fish, the kiaa0319 gene was found to be expressed in the brain, eyes and ears of zebrafish. In mammalian studies, abnormal Kiaa0319 gene expression affected neuronal migration direction and final position, as well as dendritic morphology during embryonic development in rats, leading to abnormal white and gray matter development. Knocking down the Kiaa0319 gene impaired the primary auditory cortex in rats, resulting in phoneme processing impairment similar to DD. In mice, Kiaa0319 overexpression affected the neuronal migration process, causing delayed radial migration of neurons to the cortical plate. Knockout of the Kiaa0319 gene led to abnormal development of the gray matter in mice, resulting in reduced volume of the medial geniculate nucleus and then impacting auditory processing. In primate studies, research on marmosets found that KIAA0319 gene is expressed in the visual, auditory, and motor pathways, while studies on chimpanzees revealed that KIAA0319 gene abnormalities primarily affected the gray matter volume and microstructure of the posterior superior temporal gyrus, morphology of the superior temporal sulcus and gray matter volume of the inferior frontal gyrus. The impact of KIAA0319 gene on human brain development is mainly concentrated in the left temporal lobe, where abnormal KIAA0319 gene expression caused reduced gray matter in the left inferior temporal gyrus, middle temporal gyrus and fusiform gyrus, as well as reduced white matter volume in the left temporoparietal cortex. Abnormalities in KIAA0319 gene also led to decreased hemispheric asymmetry in the superior temporal sulcus. The above-mentioned brain regions are crucial for language and reading processing. It is analyzed that the abnormalities in the DD-associated KIAA0319 gene affect neuronal migration and morphology during brain development, resulting in abnormal development of subcortical structures (such as the medial geniculate nucleus and lateral geniculate nucleus) and cortical structures (including the left temporal cortex, temporoparietal cortex and fusiform gyrus) which are involved in human visual and auditory processing as well as language processing. Impairment of the medial geniculate nucleus affects the information transmission to the auditory cortex, leading to impaired phoneme processing. Abnormalities in the magnocellular layers within the lateral geniculate nucleus hinder the normal transmission of visual information to the visual cortex, affecting the dorsal visual pathway. The left temporal lobe is closely related to language and reading, and abnormalities in its gray matter and connections with other brain areas can affect the language and word processing. In summary, abnormalities in the KIAA0319 gene can partly explain current research findings on the cognitive and neural mechanisms of DD, providing a genetic basis for theoretical models related to DD (such as general sensorimotor theory and the magnocellular theory). However, the mechanism of developmental dyslexia is complex, and there are mutual influences between different DD-associated genes and between genes and the environment, which require further exploration.

Result Analysis
Print
Save
E-mail