1.Preliminary study on constituents of extracts from stems and leaves of Aucklandia lappa and their effect of on gastric emptying and intestinal propulsion of mice
Jie GOU ; Xiao XU ; yao Mu LI ; jiang Lv YUAN
Drug Evaluation Research 2017;40(9):1259-1264
Objective To investigate the constituents of water and ethanol extracts from the stems and leaves ofAucklandia lappa and their effect on gastric emptying and intestinal propulsion of gastrointestinal normal,hyperthyroidism and inhibited mice.Methods The water,ethanol and aether petrolei extracts from stems and leaves of A.lappa were prepared,and the chemical constituents of the stems and leaves were identified by chemical reaction.The hyperthyroidism state was induced by neostigmine and inhibiting state was induced by atropine.Mice were ig administered with water and ethanol extracts (0.5 g/kg),with the improved phenol red method to determine gastric emptying and intestinal propulsion in gastrointestinal normal,hyperthyroidism and inhibited mice.Results Both water and ethanol extracts significantly improved intestinal propulsion in normal mice (P < 0.05 and 0.01),while significantly decreased the intestinal propulsion in hyperthyroidism mice (P < 0.05) and ethanol extract showed a stronger decreasing effect than that of water extract.The inhibitory effect of atropine on intestinal propulsion was intensified by these two extracts (P < 0.05).The restrained gastric emptying of normal,hyperthyroidism and inhibited mice was also observed.Chemical composition analysis indicated that many kinds of chemical components including protein,sugar,essential oil,flavonoids,lactones,alkaloids,saponins and tannins existed in the leaves and stems of A.lappa.Conclusion The leaves and stems of A.lappa could promote the intestinal propulsion of normal mice and restrain the intestinal propulsion of hyperthyroidism and inhibited mice while inhibit the gastric emptying in any condition tested,and its promoting effect on the gut may be related to the M cholinergic receptor.
2.The application potential of a modified wireless intelligent capsule cystoscope for dynamic detection of porcine bladder mucosa
Weiyang HE ; Yingjie XU ; Hang TONG ; Jie LI ; Bangshu ZHAO ; Xinyuan LI ; Xin GOU ; Mingzhao XIAO
Chinese Journal of Urology 2023;44(1):52-55
Objective:To develop an improved wireless intelligent capsule cystoscope (WCE)for dynamic detection of bladder mucosa in a pig model.Methods:The WCE was introduced into a healthy experimental pig that under general anesthesia via urethra by applying an improved device. Multi-angle images of the bladder mucosa were then obtained by controlling the position of capsule cystoscope with an external magnetic field system. The shutter speed of the WCE was 2.5 fps and was automatically converted to 1.5 fps 30 minutes after initiation. The Vue software was utilized to download the shoot pictures which were former received by a computer via wireless transmission. The pig was roused and sent to the pigpen, without limitations in moving. The improved WCE was connected with a 2 cm thread. 12 hours later, the dilated sheath was inserted again, and the capsule was removed by a foreign body forceps under observation of a ureteroscopy.Results:The WCE was successfully placed and removed from the pig's bladder with the application of the improved devices. Over 20 thousand images that with 60K pixels of bladder mucosa were captured by the WCE at various angles within 12 hours, which revealed the process of urine filling and excreting in a time-dependent way. No notable adverse effects (bleeding, urinary tract injury, etc) were noted during the process of cystoscope placement, image acquisition, transmission, and removal.Conclusion:This study developed a novel WCE that could dynamically, intelligently and accurately monitor all aspects of the pig bladder mucosa, and has preferable application prospect.
3.Correlation between Combined Urinary Metal Exposure and Grip Strength under Three Statistical Models: A Cross-sectional Study in Rural Guangxi
Jian Yu LIANG ; Hui Jia RONG ; Xiu Xue WANG ; Sheng Jian CAI ; Dong Li QIN ; Mei Qiu LIU ; Xu TANG ; Ting Xiao MO ; Fei Yan WEI ; Xia Yin LIN ; Xiang Shen HUANG ; Yu Ting LUO ; Yu Ruo GOU ; Jing Jie CAO ; Wu Chu HUANG ; Fu Yu LU ; Jian QIN ; Yong Zhi ZHANG
Biomedical and Environmental Sciences 2024;37(1):3-18
Objective This study aimed to investigate the potential relationship between urinary metals copper (Cu), arsenic (As), strontium (Sr), barium (Ba), iron (Fe), lead (Pb) and manganese (Mn) and grip strength. Methods We used linear regression models, quantile g-computation and Bayesian kernel machine regression (BKMR) to assess the relationship between metals and grip strength.Results In the multimetal linear regression, Cu (β=-2.119), As (β=-1.318), Sr (β=-2.480), Ba (β=0.781), Fe (β= 1.130) and Mn (β=-0.404) were significantly correlated with grip strength (P < 0.05). The results of the quantile g-computation showed that the risk of occurrence of grip strength reduction was -1.007 (95% confidence interval:-1.362, -0.652; P < 0.001) when each quartile of the mixture of the seven metals was increased. Bayesian kernel function regression model analysis showed that mixtures of the seven metals had a negative overall effect on grip strength, with Cu, As and Sr being negatively associated with grip strength levels. In the total population, potential interactions were observed between As and Mn and between Cu and Mn (Pinteractions of 0.003 and 0.018, respectively).Conclusion In summary, this study suggests that combined exposure to metal mixtures is negatively associated with grip strength. Cu, Sr and As were negatively correlated with grip strength levels, and there were potential interactions between As and Mn and between Cu and Mn.
4.Effects and molecular mechanism of exogenous L-carnitine on excessive endoplasmic reticulum stress-mediated hepatic pyroptosis in severely scald rats.
Fu Xiao FAN ; Peng Tao LI ; Zheng Guo XIA ; Chao Qiong XIE ; Jie Gou XU ; Qing Lian XU
Chinese Journal of Burns 2022;38(7):667-676
Objective: To investigate the effects and molecular mechanism of exogenous L-carnitine on hepatic pyroptosis mediated by excessive endoplasmic reticulum stress in severely scald rats. Methods: The experimental research method was adopted. According to the random number table (the same group method below), fifteen female Sprague Dawley rats aged 6-8 weeks were divided into sham-injury group, scald alone group, and scald+carnitine group (with 5 rats in each group), and full-thickness scald of 30% total body surface area were made on the back of rats in scald alone group and scald+carnitine group, and rats in scald+carnitine group were additionally given intraperitoneal injection of L-carnitine. At post injury hour (PIH) 72, The levels of aspartate aminotransferase (AST) and alanine dehydrogenase (ALT) of biochemical indicators of liver injury were detected by automatic biochemical analyzer with the sample number of 5. At PIH 72, liver tissue damage was detected by hematoxylin-eosin staining. At PIH 72, The mRNA levels of nucleotide-binding oligomerization domain-containing protein-like receptor family pyrin domain containing 3 (NLRP3), cysteine aspartic acid specific protease 1 (caspase-1), gasderminD (GSDMD), and interleukin 1β(IL-1β) in liver tissue as pyroptosis-related markers and glucose regulatory protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP) in liver tissue as endoplasmic reticulum stress-related markers were detected by real-time fluorescence quantitative reverse transcription polymerase chain reaction (RT-qPCR). Protein expression levels of GRP78, CHOP, NLRP3, caspase-1, caspase-1/p20, GSDMD-N, and cleaved IL-1β in liver tissue were detected by Western blotting, and the sample numbers were all 5. HepG2 cells as human liver cancer cells were divided into dimethyl sulfoxide (DMSO) group, 0.1 μmol/L tunicamycin (TM) group, 0.2 μmol/L TM group, 0.4 μmol/L TM group, and 0.8 μmol/L TM group and were treated accordingly. After 24 h of culture, cell viability was detected by cell counting kit 8, and the intervention concentration of TM was screened, and the sample number was 5. HepG2 cells were divided into DMSO group, TM alone group, and TM+carnitine group, and treated accordingly. After 24 h of culture, the protein expression levels of GRP78, CHOP, NLRP3, caspase-1, caspase-1/p20, GSDMD-N, and cleaved IL-1β in cells were detected by Western blotting, and the sample numbers were all 3. Data were statistically analyzed with one-way analysis of variance and least significant difference-t test. Results: At PIH 72, the AST and ALT levels of serum in scald alone group were (640±22) and (157±8) U/L, which were significantly higher than (106±13) and (42±6) U/L in sham-injury group, respectively, with t values of -46.78 and -25.98, respectively, P<0.01. The AST and ALT levels of serum in scald+carnitine group were (519±50) and (121±10) U/L, which were significantly lower than those in scald alone group, respectively, with t values of 4.93 and 6.06, respectively, P<0.01. At PIH 72, the morphology of liver tissue of rats in sham-injury group were basically normal with no obvious inflammatory cell infiltration; compared with those in sham-injury group, the liver tissue of rats in scald alone group showed a large number of inflammatory cell infiltration and disturbed cell arrangement; compared with that in scald alone group, the liver tissue of rats in scald+carnitine group showed a small amount of inflammatory cell infiltration. At PIH 72, the mRNA expression on levels of NLRP3, caspase-1, GSDMD, and IL-1β in liver tissue of rats in scald alone group were significantly higher than those in sham-injury group (with t values of 34.42, 41.93, 30.17, and 15.68, respectively, P<0.01); the mRNA levels of NLRP3, caspase-1, GSDMD, and IL-1β in liver tissue of rats in scald+carnitine group were significantly lower than those in scald alone group (with t values of 34.40, 37.20, 19.95, and 7.88, respectively, P<0.01). At PIH 72, the protein expression levels of NLRP3, caspase-1, caspase-1/p20, GSDMD-N, and cleaved IL-1β in liver tissue of rats in scald alone group were significantly higher than those in sham-injury group (with t values of 12.28, 26.92, 5.20, 10.02, and 24.78, respectively, P<0.01); compared with those in scald alone group, the protein expression levels of NLRP3, caspase-1, caspase-1/p20, GSDMD-N, and cleaved IL-1β in liver tissue of rats in scald+carnitine group were significantly decreased (with t values of 10.99, 27.96, 12.69, 8.96, and 12.27, respectively, P<0.01). At PIH 72, the mRNA levels of GRP78 and CHOP in liver tissue of rats in scald alone group were significantly higher than those in sham-injury group (with t values of 21.00 and 16.52, respectively, P<0.01), and the mRNA levels of GRP78 and CHOP in liver tissue of rats in scald+carnitine group were significantly lower than those in scald alone group (with t values of 8.92 and 8.21, respectively, P<0.01); the protein expression levels of GRP78 and CHOP in liver tissue of rats in scald alone group were significantly higher than those in sham-injury group (with t values of 22.50 and 14.29, respectively, P<0.01), and the protein expression levels of GRP78 and CHOP in liver tissue of rats in scald+carnitine group were significantly lower than those in scald alone group (with t values of 14.29 and 5.33 respectively, P<0.01). After 24 h of culture, the cell survival rates of 0.1 μmol/L TM group, 0.2 μmol/L TM group, 0.4 μmol/L TM group, and 0.8 μmol/L TM group were significantly decreased than that in DMSO group (with t values of 4.90, 9.35, 18.64, and 25.09, respectively, P<0.01). Then 0.8 μmol/L was selected as the intervention concentration of TM. After 24 h of culture, compared with that in DMSO group, the protein expression levels of GRP78 and CHOP in cells in TM alone group were significantly increased (with t values of 10.48 and 17.67, respectively, P<0.01), and the protein expression levels of GRP78 and CHOP in TM+carnitine group were significantly lower than those in TM alone group (with t values of 8.08 and 13.23, respectively, P<0.05 or P<0.01). After 24 h of culture, compared with those in DMSO group, the protein expression levels of NLRP3 and GSDMD-N in cells in TM alone group were significantly increased (with t values of 13.44 and 27.51, respectively, P<0.01), but the protein expression levels of caspase-1, caspase-1/p20, and cleaved IL-1β in cells were not significantly changed (P>0.05); compared with that in TM alone group, the protein expression levels of NLRP3 and GSDMD-N in cells in TM+carnitine group were significantly decreased (with t values of 20.49 and 21.95, respectively, P<0.01), but the protein expression levels of caspase-1, caspase-1/p20, and cleaved IL-1β in cells were not significantly changed (P>0.05). Conclusions: In severely scald rats, exogenous L-carnitine may play a protective role against liver injury by inhibiting the pathways related to excessive endoplasmic reticulum stress-mediated pyroptosis.
Animals
;
Burns
;
Carnitine/pharmacology*
;
Caspase 1/pharmacology*
;
Dimethyl Sulfoxide/pharmacology*
;
Endoplasmic Reticulum Stress
;
Female
;
Humans
;
Liver
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Pyroptosis
;
RNA, Messenger
;
Rats
;
Rats, Sprague-Dawley
5.Myosin Heavy Chain 7 Gene-derived miRNA-208b-3p Enhances the Fibrosis-related Gene Expression in Cardiac Fibroblasts
Meng-zhen ZHANG ; Lin ZHAI ; Lin-lin GOU ; Jie-ning ZHU ; Hui LI ; Jin-dong XU ; Xian-hong FANG ; Zhi-xin SHAN
Journal of Sun Yat-sen University(Medical Sciences) 2023;44(4):642-650
ObjectiveTo investigate the effect of myosin heavy chain 7 gene-derived miRNA-208b-3p on the fibrotic phenotype of cardiac fibroblasts. MethodsmiRNA chip array was performed to detect the dysregulated miRNAs in the myocardium of diabetic db/db mice and db/m control mice. Neonatal mouse ventricular cardiomyocytes (NMVCs) and cardiac fibroblasts (CFs) were isolated from C57BL/6 mice and cultured. Real-time quantitative PCR (RT-qPCR) was conducted to determine the expression of miR-208b-3p in mouse CFs and NMVCs subjected to angiotensinⅡ(AngⅡ) and high glucose plus glucose oxidase (G/Go) treatment, respectively. Cell counting kit 8(CCk8) assay, flow cytometry and determination of fibrosis-related protein, including COL1A1, COL3A1and α-SMA, were performed in mCFs transfected with miR-208b-3p. Dual luciferase reporter assay was performed to confirm the interaction between miR-208b-3p and the 3'-UTR of metal response element binding transcription factor 2 (Mtf2) and progesterone receptor membrane component 1(Pgrmc1), respectively. The expressions of Mtf2 and Pgrmc1 at the mRNA and protein levels in mCFs after miR-208b-3p mimic transfection were determined using RT-qPCR and Western blot assay, respectively. The small interfering RNA (siRNA) was used to inhibit Mtf2 and Pgrmc1 expression in mCFs, and the effects of Mtf2 siRNA, Pgrmc1 siRNA and miR-208b-3p on fibrosis-related protein expression in mCFs were investigated. ResultsResults of miRNA chip array and RT-qPCR assay showed that miR-208b-3p was up-regulated in the myocardium of the diabetic db/db mice. miR-208b precursor and the host gene of Myh7 were consistently increased in db/db mice. miR-208b-3p and Myh7 mRNA were expressed in mCFs and NMVCs, but the levels of miR-208b-3p and Myh7 mRNA in NMVCs were much higher than those in mCFs. miR-208b-3p was up-regulated in mCFs and NMVCs subjected to Ang Ⅱ and G/Go treatment, respectively. miR-208b-3p could significantly enhance fibrosis-related protein, including COL1A1, COL3A1 and α-SMA, in mCFs, without affecting the proliferation activity and cell cycle distribution of mCFs. Dual luciferase reporter assay revealed the interactions of miR-208b-3p with the 3'-UTR of Mtf2 and Pgrmc1. The results of RT-qPCR and Western blotting confirmed that miR-208b-3p inhibited Mtf2 and Pgrmc1 expression at the post- transcriptional level. Transfection with miR-208b-3p mimic, Mtf2 siRNA and Pgrmc1 siRNA could consistently enhance the fibrosis-related protein expression in the cardiac fibroblasts. ConclusionsmiR-208b-3p enhances fibrosis-related gene expression by targeting Mtf2 and Pgrmc1in mCFs.
6.Immunogenicity of group A+C meningococcal polysaccharide conjugate vaccine in infants: A phase Ⅲ clinical trial study.
Li Li HUANG ; Xiao Min MA ; Hai Tao HUANG ; Zhi Qiang XIE ; Jin Bo GOU ; Yong Li YANG ; Xue WANG ; Wei ZHANG ; Wang Yang YOU ; Jie Bing TAN ; Li Feng XU ; Guang Wei FENG ; Tao ZHU ; Yanxia WANG
Chinese Journal of Preventive Medicine 2022;56(12):1728-1733
Objective: To evaluate the immunogenicity of group A+C meningococcal polysaccharide conjugate vaccine in infants under 2 years old. Methods: From March 2017 to June 2018, 1 932 healthy infants in Biyang County, Henan Province, who were not vaccinated with meningococcal meningitis vaccine and whose axillary temperature was ≤37.0 ℃, were recruited as participants. The 3 months and 6-11 months old infants were allocated to the experiment group and the control group in a ratio of 1∶1. Infants aged 12-23 months were allocated to the 1-dose group, the 2-dose group and the control group in a ratio of 1∶1∶1, with 276 infants in each group. The infants in the experiment group were intramuscularly injected with freeze-dried group A+C meningococcal polysaccharide conjugate vaccine to be evaluated, and infants in the control group received intramuscular injection of commercially available freeze-dried group A+C meningococcal conjugate vaccine. The venous blood of infants was collected 30 days before the first dose and after the last dose of inoculation, and the antibody seroconversion of each group was determined and compared. Results: The completion rate of immunogenicity study was 95.2% (1 839/1 932). Before inoculation, there was no statistical difference in the geometric mean titer and positive rate of group A+C antibodies between the experiment group and the control group in 3 months and 6-11 months old infants (all P values >0.05). The geometric mean titers and positive rate of group A antibodies in the 1-dose group were higher than those in the control group (all P values <0.05), but there was no statistical difference between the 2-dose group and the control group (all P values >0.05) in infants aged 12-23 months. After inoculation, the differences (95%CI) in the positive conversion rate of group A+C antibodies between the experiment group and the control group were -0.12% (-6.01%-5.77%) and 0.82% (-4.23%-5.86%) in the 3 months old infants. At the age of 6-11 months, the differences were 6.75% (1.71%-11.79%) and -4.32% (-8.73%-0.08%), respectively. At the age of 12-23 months, the differences were 1.02% (-3.80%-5.83%) and -4.40% (-7.79%- -1.01%) in the 2-dose group and -7.22% (-12.90%- -1.54%) and -18.61% (-23.75%- -13.46%) in the 1-dose group, respectively. The geometric mean titers of group A+C antibodies in the 3 months old infants were 48.50 and 63.12, respectively, which had no significant difference from the control group (43.02 and 57.99, respectively) (both P values <0.05). The geometric mean titers of group A+C antibodies in the 6-11 months and 12-23 months old infants were 84.09 and 92.51 (2-dose group), which were higher than those in the corresponding control group (43.10 and 61.83, respectively) (all P values <0.001). Conclusion: Group A+C meningococcal conjugate vaccine has good immunogenicity in infants under 2 years old.
Humans
;
Infant
;
Child, Preschool
;
Meningococcal Vaccines
;
Vaccines, Conjugate
;
Vaccination
;
Neisseria meningitidis
;
Polysaccharides
;
Antibodies, Bacterial