1.Research progress in Menin-MLL interaction and its inhibitors in MLL-rearranged leukemia
Xinyue FANG ; Lan SHI ; Siyi XIA ; Jiaxuan WANG ; Yingli WU ; Kejun HE
Journal of Shanghai Jiaotong University(Medical Science) 2024;44(10):1287-1298
Acute leukemias caused by mixed lineage leukemia(MLL)gene rearrangements(MLL-r)are characterized by high invasiveness and a poor prognosis,with few specific treatment options available.MLL protein is essential in embryonic development and hematopoiesis.It exhibits histone methyltransferase activity and can interact with various proteins through its functional domains,thus regulating downstream target gene expression through epigenetic modifications.MLL-r leads to the formation of MLL fusion proteins(MLL-FPs),in which the C-terminal is replaced by fusion partner proteins;over 100 such partner proteins have been identified to date.In numerous studies of the molecular mechanism,Menin serves as an important cofacter in the leukemogenesis of MLL-FPs and participates in forming the key complex when interacting with the N terminal of MLL protein,resulting in the disregulation of certain targeted genes,which makes the development of Menin-MLL inhibitors theoretically possible.To date,several small molecules have been identified that inhibit Menin-MLL interaction,including thienopyrimidine derivatives,piperidine derivatives,pyrimidine derivatives,and macrocyclic mimic peptides.Based on these prototypes,at least seven drugs are currently undergoing clinical evaluation,with some promising preliminary data regarding safety,tolerability,and efficacy.This review summarizes the structure and function of MLL,the mechanism of the occurrence of MLL-r leukemia,and current Menin-MLL inhibitors tested in MLL-r leukemia.
2.Three-dimensional domain swapping as a mechanism to lock the active conformation in a super-active octamer of SARS-CoV main protease.
Shengnan ZHANG ; Nan ZHONG ; Fei XUE ; Xue KANG ; Xiaobai REN ; Jiaxuan CHEN ; Changwen JIN ; Zhiyong LOU ; Bin XIA
Protein & Cell 2010;1(4):371-383
Proteolytic processing of viral polyproteins is indispensible for the lifecycle of coronaviruses. The main protease (M(pro)) of SARS-CoV is an attractive target for anti-SARS drug development as it is essential for the polyprotein processing. M(pro) is initially produced as part of viral polyproteins and it is matured by autocleavage. Here, we report that, with the addition of an N-terminal extension peptide, M(pro) can form a domain-swapped dimer. After complete removal of the extension peptide from the dimer, the mature M(pro) self-assembles into a novel super-active octamer (AO-M(pro)). The crystal structure of AO-M(pro) adopts a novel fold with four domain-swapped dimers packing into four active units with nearly identical conformation to that of the previously reported M(pro) active dimer, and 3D domain swapping serves as a mechanism to lock the active conformation due to entanglement of polypeptide chains. Compared with the previously well characterized form of M(pro), in equilibrium between inactive monomer and active dimer, the stable AO-M(pro) exhibits much higher proteolytic activity at low concentration. As all eight active sites are bound with inhibitors, the polyvalent nature of the interaction between AO-M(pro) and its polyprotein substrates with multiple cleavage sites, would make AO-M(pro) functionally much more superior than the M(pro) active dimer for polyprotein processing. Thus, during the initial period of SARS-CoV infection, this novel active form AOM(pro) should play a major role in cleaving polyproteins as the protein level is extremely low. The discovery of AOM(pro) provides new insights about the functional mechanism of M(pro) and its maturation process.
Coronavirus
;
metabolism
;
Cysteine Endopeptidases
;
Endopeptidases
;
metabolism
;
Humans
;
Peptides
;
chemistry
;
metabolism
;
Polyproteins
;
chemistry
;
metabolism
;
Protein Binding
;
SARS Virus
;
chemistry
;
metabolism
;
Viral Proteins
3.Nanoplateletsomes restrain metastatic tumor formation through decoy and active targeting in a preclinical mouse model.
Longlong ZHANG ; Yuefei ZHU ; Xunbin WEI ; Xing CHEN ; Yang LI ; Ying ZHU ; Jiaxuan XIA ; Yiheng HUANG ; Yongzhuo HUANG ; Jianxin WANG ; Zhiqing PANG
Acta Pharmaceutica Sinica B 2022;12(8):3427-3447
Platelets buoy up cancer metastasis via arresting cancer cells, enhancing their adhesion, and facilitating their extravasation through the vasculature. When deprived of intracellular and granular contents, platelet decoys could prevent metastatic tumor formation. Inspired by these, we developed nanoplatesomes by fusing platelet membranes with lipid membranes (P-Lipo) to restrain metastatic tumor formation more efficiently. It was shown nanoplateletsomes bound with circulating tumor cells (CTC) efficiently, interfered with CTC arrest by vessel endothelial cells, CTC extravasation through endothelial layers, and epithelial-mesenchymal transition of tumor cells as nanodecoys. More importantly, in the mouse breast tumor metastasis model, nanoplateletsomes could decrease CTC survival in the blood and counteract metastatic tumor growth efficiently by inhibiting the inflammation and suppressing CTC escape. Therefore, nanoplatelesomes might usher in a new avenue to suppress lung metastasis.
4.Single-dose AAV-based vaccine induces a high level of neutralizing antibodies against SARS-CoV-2 in rhesus macaques.
Dali TONG ; Mei ZHANG ; Yunru YANG ; Han XIA ; Haiyang TONG ; Huajun ZHANG ; Weihong ZENG ; Muziying LIU ; Yan WU ; Huan MA ; Xue HU ; Weiyong LIU ; Yuan CAI ; Yanfeng YAO ; Yichuan YAO ; Kunpeng LIU ; Shifang SHAN ; Yajuan LI ; Ge GAO ; Weiwei GUO ; Yun PENG ; Shaohong CHEN ; Juhong RAO ; Jiaxuan ZHAO ; Juan MIN ; Qingjun ZHU ; Yanmin ZHENG ; Lianxin LIU ; Chao SHAN ; Kai ZHONG ; Zilong QIU ; Tengchuan JIN ; Sandra CHIU ; Zhiming YUAN ; Tian XUE
Protein & Cell 2023;14(1):69-73