1.Palpitations, Shortness of Breath, Weakness in Limbs, Edema, and Dyspnea: A Rare Inflammatory Myopathy with Positive Aniti-mitochondrial Antibodies and Cardiac Involvement
Chunsu LIANG ; Xuchang ZHANG ; Ning ZHANG ; Lin KANG ; Xiaohong LIU ; Jiaqi YU ; Yingxian LIU ; Lin QIAO ; Yanli YANG ; Xiaoyi ZHAO ; Ruijie ZHAO ; Na NIU ; Xuelian YAN
Medical Journal of Peking Union Medical College Hospital 2025;16(1):248-255
This article presents a case study of a patient who visited the Geriatric Department of Peking Union Medical College Hospital due to "palpitations, shortness of breath for more than 2 years, limb weakness for 6 months, edema, and nocturnal dyspnea for 2 months". The patient exhibited decreased muscle strength in the limbs and involvement of swallowing and respiratory muscles, alongside complications of heart failure and various arrhythmias which were predominantly atrial. Laboratory tests revealed the presence of multiple autoantibodies and notably anti-mitochondrial antibodies. Following a comprehensive multidisciplinary evaluation, the patient was diagnosed with anti-mitochondrial antibody-associated inflammatory myopathy. Treatment involved a combination of glucocorticoids and immunosuppressants, along with resistance exercises for muscle strength and rehabilitation training for lung function, resulting in significant improvement of clinical symptoms. The case underscores the importance of collaborative multidisciplinary approaches in diagnosing and treating rare diseases in elderly patients, where careful consideration of clinical manifestations and subtle abnormal clinical data can lead to effective interventions.
2.Research advances in the disease burden of viral hepatitis in China
Jian LI ; Fuzhen WANG ; Zhongdan CHEN ; Jinlei QI ; Ailing WANG ; Fanghui ZHAO ; Yuanyuan KONG ; Jing SUN ; Jiaqi KANG ; Zundong YIN ; Zhongfu LIU ; Jidong JIA ; Yu WANG
Journal of Clinical Hepatology 2025;41(2):221-227
Over the past three decades, China has made significant progress in the prevention and control of viral hepatitis, and the incidence rates of new-onset pediatric hepatitis B virus infections and acute viral hepatitis in the population have reduced to a relatively low level; however, there is still a heavy disease burden of chronic viral hepatitis in China, which severely affects the health status of the population. This study systematically summarizes the achievements of viral hepatitis prevention and control in China, analyzes existing problems and challenges, and proposes comprehensive prevention and control strategies and measures to eliminate viral hepatitis as a public health threat based on the national conditions of China, in order to provide a reference for related departments in China on how to achieve the action targets for eliminating viral hepatitis as a public health threat by 2030.
3.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
4.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
5.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
6.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
7.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
8.Research progress on the mechanism of traditional Chinese medicine monomers acting on myelosuppression after chemotherapy based on the four properties theory
Sihan ZHANG ; Tingting WANG ; Zhifen ZHAO ; Hanyu KANG ; Jiaqi JI ; Ziqiang GUO ; Tong LIU ; Shiqing JIANG
China Pharmacy 2025;36(18):2341-2347
Chemotherapy is an important treatment for tumors, but most patients experience varying degrees of chemotherapy- induced myelosuppression. Four properties theory of traditional Chinese medicine (TCM) has unique advantages in improving chemotherapy-induced myelosuppression. The monomers from TCM with different properties and flavors, such as cold-natured (e.g. Scutellaria baicalensis, Rhus chinensis), cool-natured (e.g. Ligustrum lucidum, Ophiopogon japonicus), warm-natured (e.g. Panax ginseng, Epimedium brevicornu, Curcuma longa, Angelica sinensis), hot-natured (e.g. Cinnamomum cassia, Aconitum carmichaeli), and neutral-natured (e. g. donkey-hide gelatin, Lycium barbarum, Rhodiola rosea, fungi), can exert anti- myelosuppressive effects by reducing damage to hematopoietic stem/progenitor cells, improving the bone marrow hematopoietic microenvironment, inhibiting the oxidative stress response, regulating signaling pathways, so as to ultimately repaire inflammatory damage and improve hematopoietic function, thereby playing an anti-myelosuppressive role.
9.Characteristics of Gut Microbiota in Patients with Erectile Dysfunction: A Chinese Pilot Study
Jiaqi KANG ; Qihua WANG ; Shangren WANG ; Yang PAN ; Shuai NIU ; Xia LI ; Li LIU ; Xiaoqiang LIU
The World Journal of Men's Health 2024;42(2):363-372
Purpose:
Little is known about the role of gut microbiota in the pathogenesis of erectile dysfunction (ED). We performed a study to compare taxonomic profiles of gut microbiota of ED and healthy males.
Materials and Methods:
A total of 43 ED patients and 16 healthy controls were enrolled in the study. The 5-item version of the International Index of Erectile Function (IIEF-5) with a cutoff value of 21 was used to evaluate erectile function. All participants underwent nocturnal penile tumescence and rigidity test. Samples of stool were sequenced to determine the gut microbiota.
Results:
We identified a distinct beta diversity of gut microbiome in ED patients by unweighted UniFrac analysis (R2=0.026, p=0.036). Linear discriminant analysis effect size (LEfse) analysis showed Actinomyces was significantly enriched, whereas Coprococcus_1, Lachnospiraceae_FCS020_group, Lactococcus, Ruminiclostridium_5, and Ruminococcaceae_UCG_002 were depleted in ED patients. Actinomyces showed a significant negative correlation with the duration of qualified erection, average maximum rigidity of tip, average maximum rigidity of base, tip tumescence activated unit (TAU), and base TAU. Coprococcus_1, Lachnospiraceae_FCS020_group, Ruminiclostridium_5, and Ruminococcaceae_UCG_002 were significantly correlated with the IIEF-5 score. Ruminiclostridium_5 and Ruminococcaceae_UCG_002 were positively related with average maximum rigidity of tip, average maximum rigidity of base, ΔTumescence of tip, and Tip TAU. Further, a random forest classifier based on the relative abundance of taxa showed good diagnostic efficacy with an area under curve of 0.72.
Conclusions
This pilot study identified evident alterations in the gut microbiome composition of ED patients and found Actinomyces was negatively correlated with erectile function, which may be a key pathogenic bacteria.
10.Honokiol alleviated neurodegeneration by reducing oxidative stress and improving mitochondrial function in mutant SOD1 cellular and mouse models of amyotrophic lateral sclerosis.
Yujun ZHOU ; Jingshu TANG ; Jiaqi LAN ; Yong ZHANG ; Hongyue WANG ; Qiuyu CHEN ; Yuying KANG ; Yang SUN ; Xinhong FENG ; Lei WU ; Hongtao JIN ; Shizhong CHEN ; Ying PENG
Acta Pharmaceutica Sinica B 2023;13(2):577-597
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting both upper and lower motor neurons (MNs) with large unmet medical needs. Multiple pathological mechanisms are considered to contribute to the progression of ALS, including neuronal oxidative stress and mitochondrial dysfunction. Honokiol (HNK) has been reported to exert therapeutic effects in several neurologic disease models including ischemia stroke, Alzheimer's disease and Parkinson's disease. Here we found that honokiol also exhibited protective effects in ALS disease models both in vitro and in vivo. Honokiol improved the viability of NSC-34 motor neuron-like cells that expressed the mutant G93A SOD1 proteins (SOD1-G93A cells for short). Mechanistical studies revealed that honokiol alleviated cellular oxidative stress by enhancing glutathione (GSH) synthesis and activating the nuclear factor erythroid 2-related factor 2 (NRF2)-antioxidant response element (ARE) pathway. Also, honokiol improved both mitochondrial function and morphology via fine-tuning mitochondrial dynamics in SOD1-G93A cells. Importantly, honokiol extended the lifespan of the SOD1-G93A transgenic mice and improved the motor function. The improvement of antioxidant capacity and mitochondrial function was further confirmed in the spinal cord and gastrocnemius muscle in mice. Overall, honokiol showed promising preclinical potential as a multiple target drug for ALS treatment.

Result Analysis
Print
Save
E-mail