1.Effect of case management in treatment of community prevention and re-habilitation of severe mental illness
Songguo JIANG ; Huiwu ZHU ; Jiaohua WANG
China Modern Doctor 2015;(12):122-125
Objective To investigate and analyze the effectiveness of case management in community prevention and rehabilitation of severe mental illness. Methods A total of 360 patients with basic stable major psychiatric illness were randomly selected from 20 communities as the research objects, they were randomly divided into experimental group and control group, each group had 180 cases. The experimental group was given case management, control group were not adopt case management because patients did not agree to attend the case management. Two groups of patients were carried out for a 22-months standardized management and then the clinical efficacy, medication compliance, trouble-making assess the situation and life quality were recorded and compared. Results In the clinical efficacy, medication compliance, troublemaking assess the situation and life quality of experimental group were better than the control group, the differences were statistically significant (P all<0.05). Conclusion The case management can effectively im-prove the life quality of mental patients, increase the therapeutic effect, maintain and promote social harmony and has obvious social benefit and economic benefit.
2. The association between aflatoxin exposure and primary hepatocellular carcinoma risks: a case-control study in Chongqing
Chuanfen ZHENG ; Hui ZENG ; Jia WANG ; Hui LIN ; Xiaobin FENG ; Ji'an CHEN ; Zhiqun QIU ; Jiaohua LUO ; Anwei XU ; Lingqiao WANG ; Yao TAN ; Shu CHEN ; Peng JIANG ; Weiqun SHU
Chinese Journal of Preventive Medicine 2017;51(6):539-545
Objective:
To investigate the association between aflatoxin exposure and primary hepatocellular carcinoma (PHC) development.
Methods:
From December 2013 to May 2016, we selected 214 patients newly diagnosed with PHC as cases, and 214 patients as controls from three hospitals in Chongqing. Cases were confirmed with PHC diagnosis standard. And cases caused by clear reasons such as drug-induced liver injury, alcoholic liver damage, fatty liver and gallstones etiology, were excluded. Controls were included with no cancer and no digestive system disease, and recruited simultaneously with cases. Cases and controls were frequency-matched (1∶1) by same gender and age (±3 years). Peripheral blood and random urine samples were collected and analyzed for serum HBsAg status by biochemistry analyzer, and serum AFB1-ALB adduct and urinary AFB1-N7-GUA adduct by ELISA. Basic information, living habits and history of disease for patients were obtained by questionnaires. We used wilcoxon rank sum test to compare the median of serum AFB1-ALB adduct and urinary AFB1-N7-GUA adduct in cases and controls. Logistic regression analyses were performed to assess risk factors for PHC, and synergism index (
3.Human umbilical cord mesenchymal stem cell-derived exosomes alleviate pulmonary fibrosis in mice by inhibiting epithelial-mesenchymal transition.
Jing YANG ; Huazhong HU ; Shuqin ZHANG ; Linrui JIANG ; Yuanxiong CHENG ; Haojun XIE ; Xiaoyan WANG ; Jiaohua JIANG ; Hong WANG ; Qun ZHANG
Journal of Zhejiang University. Medical sciences 2020;40(7):988-994
OBJECTIVE:
To study the anti- fibrotic effect of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-EXOs) and explore the mechanism.
METHODS:
Twenty-four C57 BL/6 mice were divided into 4 groups (=6), including the control group treated with intratracheal injection of saline (3 mg/kg); lung fibrosis model group with intratracheal injection of 1.5 mg/mL bleomycin solution (prepared with saline, 3 mg/kg); EXOs1 group with intratracheal injection of 1.5 mg/mL bleomycin solution (3 mg/kg) and hUCMSC-EXOs (100 μg/250 μL, given by tail vein injection on the next day after modeling); and EXOs2 group with intratracheal injection of 1.5 mg/mL bleomycin solution (3 mg/kg) and hUCMSC-EXOs (100 μg/250 μL, given by tail vein injection on the 10th day after modeling). At 21 days after modeling, pulmonary index, lung tissue pathology and collagen deposition in the mice were assessed using HE staining and Masson staining. The expression level of TGF-β1 was detected using ELISA, and vimentin, E-cadherin and phosphorylated Smad2/3 (p-Smad2/3) were detected using immunohistochemical staining. CCK8 assay was used to evaluate the effect of hUCMSCEXOs on the viability of A549 cells, and Western blotting was used to detect the expression levels of p-Smad2/3, vimentin, and E-cadherin in the cells.
RESULTS:
Compared with those in the model group, the mice treated with hUCMSC-EXOs showed significantly reduced the pulmonary index ( < 0.05), collagen deposition, lung tissue pathologies, lowered expressions of TGF-β1 ( < 0.05), vimentin, and p-Smad2/3 and increased expression of E-cadherin. hUCMSC-EXOs given on the second day produced more pronounced effect than that given on the 11th day ( < 0.05). CCK8 assay results showed that hUCMSC-EXOs had no toxic effects on A549 cells ( > 0.05). Western blotting results showed that hUCMSC-EXOs treatment significantly increased the expression of E-cadherin and decreased the expressions of p-Smad2/3 and vimentin in the cells.
CONCLUSIONS
hUCMSC-EXOs can alleviate pulmonary fibrosis in mice by inhibiting epithelialmesenchymal transition activated by the TGF-β1/Smad2/3 signaling pathway, and the inhibitory effect is more obvious when it is administered on the second day after modeling.
Animals
;
Epithelial-Mesenchymal Transition
;
Exosomes
;
Gene Expression Profiling
;
Gene Expression Regulation
;
Humans
;
Mesenchymal Stem Cells
;
cytology
;
Mice
;
Pulmonary Fibrosis
;
therapy
;
Transforming Growth Factor beta1
;
genetics
;
Umbilical Cord
;
cytology
4.Human umbilical cord mesenchymal stem cell-derived exosomes alleviate pulmonary fibrosis in mice by inhibiting epithelial-mesenchymal transition.
Jing YANG ; Huazhong HU ; Shuqin ZHANG ; Linrui JIANG ; Yuanxiong CHENG ; Haojun XIE ; Xiaoyan WANG ; Jiaohua JIANG ; Hong WANG ; Qun ZHANG
Journal of Southern Medical University 2020;40(7):988-994
OBJECTIVE:
To study the anti- fibrotic effect of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-EXOs) and explore the mechanism.
METHODS:
Twenty-four C57 BL/6 mice were divided into 4 groups (=6), including the control group treated with intratracheal injection of saline (3 mg/kg); lung fibrosis model group with intratracheal injection of 1.5 mg/mL bleomycin solution (prepared with saline, 3 mg/kg); EXOs1 group with intratracheal injection of 1.5 mg/mL bleomycin solution (3 mg/kg) and hUCMSC-EXOs (100 μg/250 μL, given by tail vein injection on the next day after modeling); and EXOs2 group with intratracheal injection of 1.5 mg/mL bleomycin solution (3 mg/kg) and hUCMSC-EXOs (100 μg/250 μL, given by tail vein injection on the 10th day after modeling). At 21 days after modeling, pulmonary index, lung tissue pathology and collagen deposition in the mice were assessed using HE staining and Masson staining. The expression level of TGF-β1 was detected using ELISA, and vimentin, E-cadherin and phosphorylated Smad2/3 (p-Smad2/3) were detected using immunohistochemical staining. CCK8 assay was used to evaluate the effect of hUCMSCEXOs on the viability of A549 cells, and Western blotting was used to detect the expression levels of p-Smad2/3, vimentin, and E-cadherin in the cells.
RESULTS:
Compared with those in the model group, the mice treated with hUCMSC-EXOs showed significantly reduced the pulmonary index ( < 0.05), collagen deposition, lung tissue pathologies, lowered expressions of TGF-β1 ( < 0.05), vimentin, and p-Smad2/3 and increased expression of E-cadherin. hUCMSC-EXOs given on the second day produced more pronounced effect than that given on the 11th day ( < 0.05). CCK8 assay results showed that hUCMSC-EXOs had no toxic effects on A549 cells ( > 0.05). Western blotting results showed that hUCMSC-EXOs treatment significantly increased the expression of E-cadherin and decreased the expressions of p-Smad2/3 and vimentin in the cells.
CONCLUSIONS
hUCMSC-EXOs can alleviate pulmonary fibrosis in mice by inhibiting epithelialmesenchymal transition activated by the TGF-β1/Smad2/3 signaling pathway, and the inhibitory effect is more obvious when it is administered on the second day after modeling.
Animals
;
Epithelial-Mesenchymal Transition
;
Exosomes
;
Humans
;
Mesenchymal Stem Cells
;
Mice
;
Pulmonary Fibrosis
;
Transforming Growth Factor beta1
;
Umbilical Cord