1.Proteomic Analysis of Danlou Tablet in Improving Platelet Function for Treating Coronary Heart Disease with Phlegm-stasis Intermingling Syndrome in Minipigs
Ziyan WANG ; Ying LI ; Aoao WANG ; Hongxu MENG ; Yue SHI ; Yanlei MA ; Guoyuan ZHANG ; Lei LI ; Jianxun LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):41-53
ObjectiveThis paper aims to observe the role of Danlou tablet in treating coronary heart disease (CHD) with phlegm-stasis intermingling syndrome in minipigs by improving platelet function and explore the potential pharmacological mechanism of Danlou tablet in regulating platelet function by using proteomics technology. MethodsThirty Bama minipigs were randomly divided into a normal control group (6 pigs) and a high-fat diet group (24 pigs). After 2 weeks of high-fat diet feeding, the high-fat diet group was randomly subdivided into a model group, an atorvastatin group (1 mg·kg-1), and Danlou tablet groups (0.6 g·kg-1 and 0.3 g·kg-1). All groups continued to receive a high-fat diet for 8 weeks after the procedure. The normal control group was given a regular diet, underwent only coronary angiography, and did not receive an interventional injury procedure. The model group and each administration group were fed a high-fat diet. Two weeks later, they underwent a coronary angiography injury procedure. After the procedure, drugs were mixed into the feed every morning for 8 consecutive weeks, with the minipigs maintained on a continuous high-fat diet during this period. Quantitative proteomics technology was further used to study platelet proteins, and differential proteins were obtained by screening. Bioinformatics analysis was performed to analyze key regulatory proteins and biological pathways involved in the therapeutic effect of Danlou tablet on CHD with phlegm-stasis intermingling syndrome. ResultsCompared with the normal control group, the model group showed a significant increase in total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) of minipigs' serum (P<0.01), a significant shortening in prothrombin time of (PT) (P<0.01), a coagulation function index, and an increase in whole blood viscosity (P<0.01) and platelet aggregation rate (P<0.01). Moreover, the platelet morphology was altered, and the contents of endothelin-1 (ET-1) and nitric oxide (NO) were significantly increased (P<0.01). Hemodynamic parameters were obviously abnormal, including significantly decreased systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), left ventricular systolic pressure (LVSP), and left ventricular maximal positive dp/dt (LV+dp/dtmax) (P<0.01). Left ventricular maximal negative dp/dt (LV-dp/dtmax) was significantly increased (P<0.01). Besides, there were myocardial cell hypertrophy, obvious edematous degeneration, massive interstitial inflammatory cell infiltration, high degree of fibrosis, and coronary endothelial atherosclerosis. TC and TG levels in minipigs' serum were significantly reduced in Danlou tablet groups with 0.6 g·kg-1 and 0.3 g·kg-1 (P<0.05, P<0.01), compared with those in the model group. LDL-C was decreased in the Danlou tablet group with 0.6 g·kg-1 (P<0.05). The whole blood viscosity under low and high shear conditions was significantly reduced in the Danlou tablet group with 0.6 g·kg-1 (P<0.05). In groups with all doses of Danlou tablet, maximum aggregation rate (MAR) and average aggregation rate (AAR) were significantly decreased (P<0.05, P<0.01), and platelets' morphological changes such as pseudopodia extension were reduced. ET-1 levels in the serum were significantly reduced. In the Danlou tablet group with 0.6 g·kg-1, NO level in the serum was reduced (P<0.05). In groups with all doses of Danlou tablet, DBP and MAP were significantly increased (P<0.05). In the Danlou tablet group with 0.6 g·kg-1, LVSP and LV+dp/dtmax were significantly increased (P<0.05, P<0.01), and LV-dp/dtmax was significantly decreased (P<0.05). In groups with all doses of Danlou tablet, edematous degeneration in myocardial tissue was milder, and coronary artery lesion degree was significantly alleviated. Compared with the normal control group, there were 94 differentially expressed proteins in the model group, including 81 up-regulated and 13 down-regulated proteins. Compared with the model group, the Danlou tablet group with 0.6 g·kg-1 showed 174 differentially expressed proteins, including 100 up-regulated and 74 down-regulated proteins. A total of 30 proteins were reversed after Danlou tablet intervention. Bioinformatics analysis revealed that its pharmacological mechanism may exert anti-platelet activation, aggregation, and adhesion effects through biological pathways such as regulation of actin cytoskeleton, platelet activation pathway, Fcγ receptor-mediated phagocytosis, as well as proteins such as growth factor receptor-bound protein 2 (GRB2), Ras-related C3 botulinum toxin substrate 2 (RAC2), RAC1, and heat shock protein 90 alpha family class A member 1 (HSP90AA1). ConclusionDanlou tablet can effectively reduce platelet activation and aggregation, exerting a good therapeutic effect on CHD with phlegm-stasis intermingling syndrome in minipigs. Its pharmacological mechanism may involve regulating biological pathways such as actin cytoskeleton and platelet activation pathway, as well as proteins like GRB2, RAC2, RAC1, and HSP90AA1, thereby exerting a pharmacological effect in anti-platelet activation, aggregation, and adhesion.
2.Intervention of Acute Lung Injury by Traditional Chinese Medicine via Regulating Oxidative Stress: A Review
Ang'ang LI ; Xiao LIANG ; Junmei LI ; Qing PENG ; Jianxun LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):305-312
Acute lung injury (ALI) is a clinically critical disease with limited treatment options and poor prognosis, with high morbidity and mortality. Pulmonary inflammation caused by trauma, infection, and other factors in vivo and in vitro can damage alveolar epithelial and vascular endothelial barriers, resulting in lung tissue congestion and edema and eventually leading to significant dyspnea and hypoxemia, It can further develop into acute respiratory distress syndrome. Oxidative stress is one of the pathogenesis of ALI. A large number of reactive oxygen species (ROS) can promote the aggregation of inflammatory cells, increase pulmonary capillary permeability, and even directly damage lung tissue. Therefore, regulating oxidative stress becomes one of the effective means to reduce the degree of lung injury. According to the theory of traditional Chinese medicine (TCM), ALI is divided into the categories of "sudden wheezing" and "dyspnea due to wheezing". TCM treats the causes of dampness, heat, poison, and stasis by syndrome differentiation and treatment, regulates Qi and blood, and balances Yin and Yang to restore the physiological function of the lung. In recent years, a large number of studies have shown that TCM can regulate ROS through multiple targets and mechanisms and play a role in reducing lung inflammation and protecting alveolar epithelial cells and endothelial vessels, in which the nuclear factor E2 associated factor 2 (Nrf2) antioxidant pathway plays an important role. Based on the generation and clearance of ROS, this article summarized the related mechanisms of TCM monomers, TCM pairs, and TCM compounds in regulating oxidative stress to prevent ALI, so as to provide theoretical reference for the research and development of new TCM for ALI and clinical treatment.
3.Determination method of clopidogrel and its metabolites in rat plasma and its pharmacokinetic study
Huan YI ; Lan MIAO ; Changying REN ; Li LIN ; Mingqian SUN ; Qing PENG ; Ying ZHANG ; Jianxun LIU
China Pharmacy 2025;36(13):1599-1603
OBJECTIVE To establish a method for determining the contents of clopidogrel (CLP), clopidogrel carboxylate (CLP-C), clopidogrel acyl-β-D-glucuronide (CLP-G) and contents of clopidogrel active metabolite (CAM) in rat plasma, and to investigate their in vivo pharmacokinetic characteristics. METHODS The Shisedo CAPCELL ADME column was used with a mobile phase consisting of water and acetonitrile (both containing 0.1% formic acid) in a gradient elution. The flow rate was 0.4 mL/min, and the column temperature was maintained at 20 ℃. The injection volume was 2 μL. The analysis was performed in positive ion mode using electrospray ionization with multiple reaction monitoring. The ion pairs for quantitative analysis were m/z 322.1→211.9 (for CLP), m/z 308.1→197.9 (for CLP-C), m/z 322.1→154.8 (for CLP-G), m/z 504.1→154.9 [for racemic CAM derivative (CAMD)]. Six rats were administered a single intragastric dose of CLP (10 mg/kg). Blood samples were collected before medication and at 0.08, 0.33, 0.66, 1, 2, 4, 6, 10, 23 and 35 hours after medication. The established method was used to detect the serum contents of various components in rats. Pharmacokinetic parameters were then calculated using WinNonlin 6.1 software. RESULTS The linear ranges for CLP, CLP-C and CAMD were 0.08-20.00, 205.00-8 000.00, and 0.04-25.00 ng/mL, respectively (r≥0.990). The relative standard deviations for both intra-day and inter-day precision tests were all less than 15%, and the relative errors for accuracy ranged from -11.68% to 14.40%. The coefficients of variation for the matrix factors were all less than 15%, meeting the requirements for bioanalytical method validation. The results of the pharmacokinetic study revealed that, following a single intagastric administration of CLP in rats, the exposure to the parent CLP in plasma was extremely low. Both the area under the drug concentration-time curve (AUC0-35 h) and the peak concentration of the parent CLP were lower than those of its metabolites. The AUC0-35 h of the active metabolite CAM was approximately 43 times that of CLP, though it had a shorter half-life (2.53 h). The inactive metabolite CLP-C exhibited the highest exposure level, but it reached its peak concentration the latest and was eliminated slowly. The AUC0-35 h of CLP-G was about four times that of CAM, and its half-life was similar to that of CLP-C. CONCLUSIONS This study successfully established an liquid chromatography-tandem mass spectrometry method for the determination of CLP and its three metabolites, and revealed their pharmacokinetic characteristics in rats. Specifically, the parent drug CLP was rapidly eliminated, while the inactive metabolites CLP-C and CLP-G exhibited long half-lives, and active metabolite CAM displayed a transient exposure pattern.
4.Application of dual chamber round tissue expander in immediate breast reconstruction.
Jianxun MA ; Xi BU ; Bi LI
Journal of Peking University(Health Sciences) 2025;57(1):166-171
OBJECTIVE:
To explore the application value of dual chamber round tissue expander in immediate breast reconstruction.
METHODS:
Sixteen patients, who had been provided immediate tissue expander/implant two-stage breast reconstruction using dual chamber round tissue expander in our hospital from March 2022 to October 2023, were involved in this study, and the relevant information was analyzed retrospectively. The overall design of the expander is a round shape, consisting of two equally divided semi-circular chambers. The two expansion chambers are connected by a silicone pad below and are respectively connected to their own water injection tubes. Both chambers are designed to expand unidirectionally towards the surface. The expansion principle, insertion process, and type of expander selection were investigated. The expansion effect and incidence of complications were summarized. The aesthetic effect of reconstructed breasts was evaluated from three aspects after stage Ⅱ surgery: the position of infra mammary fold, the breast protrusion, and the breast volume.
RESULTS:
Among sixteen patients in this study, three patients were selected with the type of 400 mL expander and thirteen patients were given the type of 600 mL expander. The median time of tissue expansion was 4.0 (2.0, 5.0) months, with an average volume of expansion of (538.8±111.7) mL. The average expansion ratio of upper/lower chamber was 45.4%±8.4%. The position of the infra mammary fold needed not to be adjusted during the prosthesis exchange process. All the patients were applied anatomical prostheses, and the median volume of the prosthesis was 395 (345, 410) mL. One patient developed seroma during expansion period, who got improved after local aspiration. The average follow-up time was (9.0±3.6) months. 81.3% (13/16) of the patients achieved an aesthetic evaluation of "Good" in breast reconstruction, and 75.0% (12/16) of the patients got a grade Ⅰ or grade Ⅱ capsule contracture of the prosthesis.
CONCLUSION
The application of dual chamber round tissue expander could effectively dilate the lower pole of the breast, personalize the expansion ratio of the upper and lower poles of the breast, and avoid the displacement of the expander during the expansion period. Therefore, it could provide a good foundation for subsequent prosthesis exchange.
Humans
;
Tissue Expansion Devices
;
Female
;
Mammaplasty/instrumentation*
;
Tissue Expansion/instrumentation*
;
Retrospective Studies
;
Adult
;
Middle Aged
;
Breast Neoplasms/surgery*
;
Breast Implants
;
Mastectomy
5.Research progress in the diagnosis and treatment of rheumatoid arthritis with phlegm-dampness syndrome
Li HAN ; Bin HAN ; Lin CAO ; Ming YANG ; Jianxun REN
International Journal of Traditional Chinese Medicine 2024;46(6):808-812
Phlegm-dampness syndrome is a common syndrome type of rheumatoid arthritis (RA), which is closely related to spleen dysfunction. Combined with the understanding of modern medicine on the pathogenesis of phlegm dampness and spleen dysfunction, it is believed that the important factors to promote the development of RA include inflammation related to lipid metabolism disorders, abnormal glucose regulation, and intestinal flora imbalance. Improper diet or external factors lead to glucose and lipid metabolism disorders and affect the imbalance of intestinal microbiota, causing damage to the intestinal mucosal barrier. The metabolites produced promote endogenous glucose and lipid metabolism imbalance and inflammatory response, thus forming the biological basis of RA with phlegm dampness syndrome. The method of invigorating spleen, removing dampness and resolving phlegm can correct the disorder of glucose and lipid metabolism in the body. It can also adjust endogenous glucose and lipid metabolism and inhibit RA inflammation by improving the composition of intestinal flora in RA patients, thus playing a therapeutic role.
6.Comparison on Rat Models of Acute Cerebral Infarction Due to Stasis Combined with Toxin Complicated with Cerebral-cardiac Syndrome
Mingjiang YAO ; Junyuan LI ; Yue LIU ; Ce CAO ; Guo YUAN ; Lei LI ; Jianxun LIU ; Yunling ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(1):112-119
ObjectiveTo observe and compare the electrocardiogram index, myocardial morphology, and connexin 43 (Cx43) expression of two rat models of acute cerebral infarction (ACI) due to stasis combined with toxin complicated with cerebral-cardiac syndrome (CCS), and to provide experimental evidence for the research on the occurrence mechanism of cardiac diseases induced by ACI and the clinical diagnosis and treatment of CCS. MethodSixty SPF-grade male SD rats were randomized into six groups (n=10): normal , syndrome of stasis combined with toxin induced by carrageenin combined with dry yeast (CA/Y), multi-infarct induced by micro-embolism (ME), middle cerebral artery occlusion (MCAO), CA/Y+ME, and CA/Y+MCAO groups. The model of syndrome of stasis combined with toxin was established by intraperitoneal injection with carrageenan (CA) at 10 mg·kg-1 on the first day and subcutaneous injection with dry yeast (Y) suspension (2 mg·kg-1) on the second day of modeling. Twenty-four hours after the modeling of ACI, the electrocardiograms (ECGs) of rats in each group were collected and the number/percentage (%) of abnormal ECG was calculated. The infarct area of the brain was evaluated by 2,3,5-triphenyltetrazolium chloride (TTC) staining, and myocardial injury was assessed by hematoxylin-eosin (HE) staining. Immumohistochemical staining and Western blot were employed to determine the expression of Cx43 in the myocardium. ResultA certain number of rats in each model group presented abnormal ECG. Compared with the normal group and CA/Y group, CA/Y+MCAO group had the highest rate of abnormal ECG (P<0.01). Compared with the normal, CA/Y, ME, and CA/Y+ME groups, the CA/Y+ME and CA/Y+MCAO groups showed decreased amplitudes of P-wave and T-wave, shortened P-R interval, and extended Q-T interval, which were particularly obvious in the CA/Y+MCAO group (P<0.05, P<0.01) and in accordance with the cerebral infarction area and pathological changes. The expression of Cx43 was up-regulated in both CA/Y+ME and CA/Y+MCAO groups, especially in the CA/Y+MCAO group (P<0.01). ConclusionThe two rat models of ACI due to stasis combined with toxin complicated with CCS can be used to study the mechanism of heart diseases caused by cerebrovascular diseases and the therapeutic effects of Chinese medicines with the functions of resolving stasis and detoxifying. Moreover, the CA/Y+MCAO method has higher abnormal electrocardiogram rate, severer myocardial pathological injury, and higher expression of Cx43 protein. The models can be chosen according to specific experimental purpose.
7.Shuangshen Ningxin Capsules Regulates Mitochondrial Fission and Fusion to Alleviate Myocardial Ischemia-reperfusion Injury in Rats
Gaojie XIN ; Yuanyuan CHEN ; Zixin LIU ; Yue YOU ; Ce CAO ; Aoao WANG ; Hongxu MENG ; Xiao HAN ; Jianxun LIU ; Lei LI ; Jianhua FU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):87-94
ObjectiveTo explore whether the mechanism of Shuangshen Ningxin capsules (SSNX) in alleviating myocardial ischemia-reperfusion injury (MIRI) in rats is related to the regulation of mitochondrial fission and fusion. MethodThis study focused on Sprague Dawley (SD) rats and ligated the left anterior descending branch of the coronary artery to construct a rat model of MIRI. The rats were divided into the sham operation group, model group, SSNX group (90 mg·kg-1) and trimetazidine group (5.4 mg·kg-1). The activity of superoxide dismutase (SOD) and the content of malondialdehyde (MDA) were detected by micro method. Changes in mitochondrial membrane potential (△Ψm) and the degree of mitochondrial permeability transition pore (mPTP) opening were detected by the chemical fluorescence method. The intracellular adenosine triphosphate (ATP) level was detected by the luciferase assay. The messenger ribonucleic acid (mRNA) and protein expression levels of mitochondrial fission and fusion related factors dynamin-related protein 1 (DRP1), mitochondrial fission 1 protein (FIS1), optic atrophy protein 1 (OPA1), mitochondrial outer membrane fusion protein 1 (MFN1), and MFN2 were detected by real-time polymerase chain reaction (real-time PCR) and Western blot. ResultCompared with the sham operation group, the model group showed a decrease in serum SOD activity and an increase in MDA content. The opening level of mPTP, the level of △Ψm and ATP content decreased, the protein expressions of mitochondrial fission factors DRP1 and FIS1 increased, and the protein expressions and mRNA transcription levels of fusion related factors OPA1 and MFN1 decreased. Compared with the model group,SSNX significantly increased serum SOD activity, reduced MDA content, increased intracellular ATP level and △Ψm, reduced the opening level of mPTP, downregulated the protein expressions of mitochondrial fission factors DRP1 and FIS1, and increased the mRNA transcription levels and protein expressions of fusion related factors OPA1 and MFN1. ConclusionSSNX inhibits the expressions of mitochondrial fission factors DRP1 and FIS1, and increases the expressions of fusion related factors OPA1 and MFN1, inhibiting mitochondrial fission and increasing mitochondrial fusion, thereby alleviating MIRI.
8.Mechanism of Ferroptosis in Myocardial Cells and Protective Effect of Traditional Chinese Medicine
Haoran LI ; Ce CAO ; Lei LI ; Jianxun LIU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(4):260-270
Ferroptosis is a new type of programmed cell death, characterized by iron overload and lipid peroxidation. Cardiovascular disease (CVD) is an ischemic or hemorrhagic disease of the heart caused by various factors, mainly including myocardial infarction, heart failure, etc. Ferroptosis is involved in the process of myocardial cell damage and plays a driving role in the progression of various CVDs. Its main mechanisms include the destruction of iron homeostasis, the production of reactive oxygen species, the disorder of the antioxidant system, mitochondrial membrane damage, endoplasmic reticulum stress, tumor suppressor gene p53, transcription factor Nrf2 pathway, etc. Myocardial injury is one of the causes of death in many patients with heart disease. Monomers or compounds of traditional Chinese medicine have shown good effects in the treatment of myocardial cell injury caused by ferroptosis, including baicalin protecting cardiac microvascular endothelial cells of myocardial ischemia-reperfusion (I/R) rats through intracellular phosphatidylinositol kinase/phosphokinase B/endothelial nitric oxide synthase (PI3K/Akt/eNOS) pathway, Aralia elata saponin inhibiting myocardial cell ferroptosis through glucocorticoid receptor/p53/solute carrier family 7 members 11 (NR3C1/p53/SLC7A11) pathway, Xinyang tablets improving oxidative stress by regulating phosphorylated serine/threonine protein kinase/stress-activated protein kinase/p53 (MLK3/JNK/p53) signaling pathway. It is of great significance to explore the mechanism of ferroptosis and the protective effect of related traditional Chinese medicine after myocardial cell injury. This article reviews the mechanism of ferroptosis and its relationship with myocardial cells, as well as traditional Chinese medicine monomers and formulas for treating CVDs through the ferroptosis pathway. The article focuses on the pathways and effects of traditional Chinese medicine treatment, so as to provide a reference for the treatment of CVDs with traditional Chinese medicine.
9.Effect of Longmu Piyan Prescription on Oxidative Stress in Atopic Dermatitis Mice
Mengxi MA ; Siqi WU ; Qingying WANG ; Yaqin LI ; Jinhe WANG ; Na LANG ; Jianxun REN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(5):88-95
ObjectiveThis study observes the intervention effect of Longmu Piyan prescription on oxidative stress in BALB/c mice with atopic dermatitis (AD) induced by 2,4-dinitrochlorobenzene (DNCB) and explores its mechanism. MethodThe AD model was established using the method of DNCB sensitization on the back skin of BALB/c mice. Forty male BALB/c mice were randomly divided into a blank group, a model group, a vitamin C control group (0.5×10-3 mg·kg-1), and a Longmu Piyan prescription group (26 g·kg-1). Except for the blank group, other groups were sensitized with different concentrations of DNCB on the back to induce AD, and the blank group was treated with matrix coating. The gastric administration was started on the seventh day after sensitization with 2% DNCB and on the 24th day after sensitization with 0.2% DNCB continuously for 21 days. The changes in skin lesions of each group were directly observed after the experiment. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of interleukin (IL)-4, tumor necrosis factor (TNF)-α, immunoglobulin E (IgE), and reactive oxygen species (ROS) in the serum of each group. The total antioxidant capacity determination kit-trace method (ABTS method) was used to measure the level of total antioxidant capacity (TAOC) in serum. The Hematoxylin eosin (HE) staining method was used to observe the pathological and morphological changes of the skin lesion site. The immunohistochemical method was used to detect the expression of thymic stromal lymphopoietin (TSLP) in the skin lesion site. Western blot was used to detect the expression of filaggrin (FLG) in the dorsal skin lesions. ResultThe results showed that compared with the blank group, the skin lesion score of the model group mice was significantly increased (P<0.01), and HE staining showed characteristic pathological changes of AD in the skin lesion site. At the same time, the expression of TSLP in the skin lesion was significantly increased, and that of FLG was reduced (P<0.05). The levels of TNF-α, IL-4, IgE, and ROS in serum increased, while the activity of TAOC decreased (P<0.01). Compared with the model group, the Longmu Piyan prescription group showed a significant decrease in skin lesion scores and a significant improvement in skin lesion pathology. At the same time, the expression of TSLP decreased, and the expression of FLG increased in the skin lesions (P<0.05). In addition, compared with the model group, the serum levels of TNF-α, IL-4, IgE, and ROS also decreased to varying degrees (P<0.05,P<0.01), and TAOC activity increased in the Longmu Piyan prescription group (P<0.01). ConclusionThere is a significant correlation among the degree of oxidative stress, the severity of skin lesions in AD, and the levels of inflammatory cytokines. Longmu Piyandu prescription can improve AD-like skin lesions in BALB/c mice by promoting ROS clearance, enhancing TAOC, and inhibiting oxidative stress, thus protecting the skin barrier and reducing inflammation.
10.Exploring the mechanism of icariin in regulat-ing cardiac microvascular endothelial cells based on network pharmacology,molecular docking and in vitro experiments
Ce CAO ; Li LI ; Ziyan WANG ; Haoran LI ; Jianxun LIU
Chinese Journal of Pharmacology and Toxicology 2023;37(z1):25-26
OBJECTIVE To investigate the regulatory effects of icariin(ICA)on cardiac micro-vascular endothelial cells(CMEC)after oxygen-glucose deprivation reperfusion(OGD/R)injury.METHODS CMEC were subjected to OGD/R treatment to construct a myocardial ischemia-reperfusion model,and were divided into normal,model,low(10 μmol·L-1),medium(20 μmol·L-1)and high(40 μmol·L-1)ICA group,and high ICA+ inhibitor group(40 μmol·L-1+20 nmol·L-1).CCK-8 assay was used to assess the protective ability of ICA against CMEC,and cell migration assay and tube-formation assay were used to detect the migration and generation ability of CMEC.The TCMSP database,Swiss-Target database and literature mining methods were used to col-lect ICA-related targets,the GeneCards data-base was used to collect target genes related to myocardial ischemia/reperfusion,and Cytoscape 3.8.0 software was used to construct a"drug-tar-get-disease"network.The potential targets were imported into STRING 11.5 database to obtain the PPI network.GO and KEGG enrichment analyses were performed on the potential targets using the DAVID database.Molecular docking was performed using AutoDock-vina 1.1.2 soft-ware.Western blot detected the expression of related proteins.RESULTS After CMEC was subjected to OGD/R treatment,ICA had a protec-tive effect at 10-160 μmol·L-1;the results of the cell migration assay showed that each group of ICA could promote the migratory effect of CMEC(P<0.01,P<0.01);and the results of tube-for-mation assay showed that each group of ICA could significantly promote the generation of branches(P<0.01)and the capillary length exten-sion(P<0.05).Network pharmacology collected a total of 23 ICA action targets,1500 disease tar-gets and 12 key targets.GO function enrichment analysis found 85 results.KEGG pathway enrich-ment analysis found 53 results,involving AGE-RAGE signaling pathway,sphingolipid signaling pathway and VEGF signaling pathway.Molecu-lar docking results showed that ICA had better binding with core targets PRKCB,PRKCA and PTGS2.Western blot results showed that ICA could regulate the expression of PRKCB,PRKCA and PTGS2 proteins.The results of cell migra-tion assay,tube-formation assay and protein expression were reversed after addition of PKC inhibitor.CONCLUSION The potential mecha-nism of action of ICA against myocardial isch-emia-reperfusion injury may be related to the reg-ulation of processes such as CMEC migration and angiogenesis,and it functions through the key target gene PKC.

Result Analysis
Print
Save
E-mail