1.Clinical observations of micro-incision vitrectomy surgery for retinopathy of prematurity with early intervention failure
Cui WANG ; Guoming ZHANG ; Yi CHEN ; Dahui MA ; Jieting SHE ; Ruyin TIAN ; Miaohong CHEN ; Jinlian GUO ; Honghui HE ; Jian ZENG ; Jiantao WANG
Chinese Journal of Ocular Fundus Diseases 2020;36(8):590-594
Objective:To evaluate the safety and efficacy of 27G micro-incision vitrectomy surgery (MIVS) combined with intravitreal injection of ranibizumab (IVR) in the treatment of retinopathy of prematurity (ROP) with early intervention failure.Methods:Retrospective case series was performed. Fourteen eyes (11 infants) with ROP who underwent 27G MIVS combined with IVR were included from March 2016 to January 2018 in Shenzhen Eye Hospital. Among them, there were 5 males with 7 eyes, 6 females with 7 eyes. The average gestational age of the infants was 28.12±0.90 weeks; the average birth weight was 1 023.64±200.96 g. Before the early clinical intervention, 1 infant (2 eyes) had ROP in zone Ⅰ stage 3 with plus disease, 8 infants (10 eyes) had ROP in zone Ⅱ stage 3 with plus disease, and 2 infants had ROP in aggressive posterior ROP. Six eyes underwent laser photocoagulation, while 8 eyes received laser therapy combined with IVR. Six eyes of stage 4A ROP and 8 eyes in stage 4B. Retinal detachment was detected with a mean of 10.44±9.21 weeks. At the time of surgery, the average post-conceptional age was 48.02±8.09 weeks. All the affected eyes were treated with standard sclera with three incisions 27G MIVS. During the operation, only local vitrectomy was performed to release and clear fibroascular proliferation in the optic disc, anterior macular area and pericristal area. After surgery, 10 mg/ml of ranibizumab 0.03 ml was injected into the vitreous cavity. The average follow-up time was 23.36±8.34 months. The primary objectives were the condition of retinal reset, ROP progression control and complications.Results:All patients had uneventful surgeries with an average duration of 32.86±9.35 mins. Of the 14 eyes, 12 eyes (85.71%) were controlled, 8 eyes (57.14%) had a good rearrangement of macular structure, while 4 eyes with macular traction. Two eyes had ROP progression, recurrence of retinal detachment, posterior synechia. Complicated cataract was in 1 eye. Proliferative vitreoretinopathy and retinal detachment was in 1 eye after 7 months the operation.Conclusion:27G MIVS combined with IVR is a safe and effective treatment for ROP with early clinical intervention failure.
2.Effect of renal failure on docetaxel exposure and adverse reactions in breast cancer patients
Juxiang ZHOU ; Shuangying WANG ; Jiantao SHE ; Xianliang ZENG ; Jihong ZHANG
Journal of Pharmaceutical Practice and Service 2022;40(6):571-575
Objective To investigate the influence of renal failure on the area under curve (AUC) and adverse reactions of docetaxel in breast cancer patients, and provide evidence for the dosage of docetaxel in renal failure patients. Methods A retrospective study was conducted on 24 patients with breast cancer who had undergone radical mastectomy and received AC-T adjuvant chemotherapy in our hospital from January 2019 to November 2021. According to renal function cases, the patients were divided into two groups: renal failure group (n=5) and normal renal function group (n=19). The clinical characteristics such as gender, age, body weight and body surface area of patients in two groups, docetaxel dose, blood concentration, area under the curve, liver and kidney function, white blood cell count and absolute value of neutrophil before chemotherapy were collected. Single factor linear regression was used to analyze the influencing factors of the AUC of docetaxel. Adverse reactions after chemotherapy with docetaxel including nausea and vomiting, bone marrow suppression, constipation and liver function injury were collected. CTCAE 4.0 evaluation standard was used to evaluate adverse reactions. Results The clinical characteristics of creatinine [908.0 (819.0, 1018.0) μmol/L vs 54.8 (52.0, 65.0) μmol/L] and creatinine clearance rate [4.9 (4.3, 5.4) ml /min vs 86.3 (59.3, 92.5) ml/min] of the renal failure group and the normal renal function group have significant difference (P<0.001), while no significant difference (P>0.05) were found in the body surface area [1.4 (1.4, 1.5) m2 vs 1. 6 (1.5, 1.6) m2], docetaxel dose [70.4 (69.4, 73.0) mg/m2 vs 74.4 (72.3, 91.2) mg/m2], body weight [(51.4±3.8) kg vs (51.5±5.5) kg]. Liver function, white blood cells and neutrophils were within the normal range before chemotherapy with docetaxel. There was no significant difference in AUC value [(1.6±0.6) mg·h/L vs (1.8±0.8) mg·h/L] between the two groups after chemotherapy with docetaxel (P>0.05). Linear univariate regression analysis indicated that the blood concentration at the end of docetaxel infusion was significantly associated with AUC of docetaxel (P<0.001), while the body surface area, dose of docetaxel, body weight, liver and kidney function were not correlated with AUC of docetaxel (P>0.05). After chemotherapy with docetaxel, adverse reactions of patients in the two groups: nausea and vomiting (grade I incidence: 40% vs. 57.9%, grade II incidence: 60% vs. 42.1%), myelosuppression (grade I incidence: 60% vs. 84.2%, grade II incidence: 20% vs 15.8%) and constipation (all mild constipation) had no significant difference (P>0.05). Conclusion Renal failure did not affect the exposure of docetaxel and the adverse reactions after chemotherapy with docetaxel in breast cancer patients.