1.Nodakenin ameliorates TNBS-induced experimental colitis in mice by inhibiting pyroptosis of intestinal epithelial cells.
Ju HUANG ; Lixia YIN ; Minzhu NIU ; Zhijun GENG ; Lugen ZUO ; Jing LI ; Jianguo HU
Journal of Southern Medical University 2025;45(2):261-268
OBJECTIVES:
To investigate the therapeutic mechanism of nodakenin for Crohn's disease (CD)-like colitis in mice.
METHODS:
Using a colonic organoid model with lipopolysaccharide (LPS)- and ATP-induced pyroptosis, we investigated the effects of nodakenin on pyroptosis, intestinal barrier function and inflammatory response by detecting key pyroptosis-regulating factors and assessing changes in permeability and pro-inflammatory factors. In a mouse model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced CD-like colitis, the therapeutic effect of nodakenin was evaluated by measuring changes in body weight, DAI score, colonic histopathologies, inflammation score, intestinal barrier function and intestinal epithelial cell pyroptosis. The mechanism of nodakenin protection against pyroptosis of intestinal epithelial cells was explored using network pharmacology analysis and in vivo and in vitro experiments.
RESULTS:
In LPS- and ATP-induced colonic organoids, treatment with nodakenin significantly inhibited the expressions of NLRP3, GSDMD-N, cleaved caspase-1 and caspase-11, improved intestinal FITC-dextran (FD4, 4000) permeability, and decreased the levels of IL-1β and IL-18. In the mouse model of TNBS-induced colitis, nodakenin treatment significantly alleviated weight loss, reduced DAI score, inflammatory cell infiltration and inflammation score, and decreased serum FD4 and I-FABP levels and bacteria translocation to the mesenteric lymph nodes, spleen and liver. The mice with nodakenin treatment had also lowered expressions of NLRP3, GSDMD-N, cleaved caspase-1 and caspase-11 in the intestinal mucosa. Network pharmacology analysis suggested that the inhibitory effect of nodakenin on colitis was associated with the PI3K/Akt pathway. In both the colonic organoid model and mouse models of colitis, nodakenin effectively inhibited the activation of the PI3K/Akt pathway, and the application of IGF-1, a PI3K/Akt pathway activator, strongly attenuated the protective effect of nodakenin against intestinal epithelial cell pyroptosis and intestinal barrier dysfunction.
CONCLUSIONS
Nodakenin protects intestinal barrier function and alleviates CD-like colitis in mice at least partly by inhibiting PI3K/Akt signaling to reduce intestinal epithelial cell pyroptosis.
Animals
;
Pyroptosis/drug effects*
;
Mice
;
Trinitrobenzenesulfonic Acid
;
Colitis/drug therapy*
;
Epithelial Cells/drug effects*
;
Intestinal Mucosa/cytology*
;
Disease Models, Animal
;
Coumarins/pharmacology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Crohn Disease/drug therapy*
2.Cimifugin ameliorates Crohn's disease-like colitis in mice by modulating Th-cell immune balance via inhibiting the MAPK pathway.
Lixia YIN ; Minzhu NIU ; Keni ZHANG ; Zhijun GENG ; Jianguo HU ; Jiangyan LI ; Jing LI
Journal of Southern Medical University 2025;45(3):595-602
OBJECTIVES:
To investigate the therapeutic effects of cimifugin on Crohn's disease (CD)-like colitis in mice and its possible mechanism.
METHODS:
Thirty adult male C57BL/6 mice were randomized equally into control group, 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced CD-like colitis model group, and cimifugin treatment (daily gavage at 12.5 mg/kg) group. The therapeutic effect of cimifugin was evaluated by observing changes in body weight, disease activity index (DAI) scores, colon length, histopathological inflammation scores, and inflammatory cytokine levels in the colonic mucosa. Intestinal barrier integrity in the mice was assessed using immunofluorescence assay and Western blotting for claudin-1 and ZO-1; T-helper (Th) cell subset ratios in the mesenteric lymph nodes were analyzed with flow cytometry. Network pharmacology, KEGG enrichment analysis and molecular docking were used to predict the targets of cimifugin and analyze the key pathways and cimifugin-MAPK protein interactions, which were validated by Western blotting in the mouse models.
RESULTS:
In mice with TNBS-induced colitis, cimifugin treatment significantly attenuated body weight loss and colon shortening, lowered DAI and histopathological scores, decreased IFN-γ and IL-17 levels, and increased IL-4 and IL-10 levels in the colonic mucosa. Cimifugin treatment also significantly improved TNBS-induced claudin-1 dislocation and reduction of goblet cells, upregulated claudin-1 and ZO-1 expressions, reduced Th1 and Th17 cell percentages, and increased Th2 and Treg cell percentages in the colonic mucosa of the mice. KEGG analysis suggested a possible connection between the effect of cimifugin and MAPK signaling, and molecular docking showed strong binding affinity between cimifugin and MAPK core proteins. Western blotting demonstrated significantly decreased phosphorylation levels of JNK, ERK, and p38 in the colonic mucosa of cimifugin-treated mouse models.
CONCLUSIONS
Cimifugin alleviates TNBS-induced CD-like colitis by repairing intestinal barrier damage and restoring Th1/Th2 and Th17/Treg balance via suppressing MAPK pathway activation.
Animals
;
Mice, Inbred C57BL
;
Male
;
Mice
;
Crohn Disease/immunology*
;
Colitis/immunology*
;
MAP Kinase Signaling System/drug effects*
;
Trinitrobenzenesulfonic Acid
;
T-Lymphocytes, Helper-Inducer/drug effects*
;
Intestinal Mucosa
;
Disease Models, Animal
3.Ecliptasaponin A ameliorates DSS-induced colitis in mice by suppressing M1 macrophage polarization via inhibiting the JAK2/STAT3 pathway.
Minzhu NIU ; Lixia YIN ; Tong QIAO ; Lin YIN ; Keni ZHANG ; Jianguo HU ; Chuanwang SONG ; Zhijun GENG ; Jing LI
Journal of Southern Medical University 2025;45(6):1297-1306
OBJECTIVES:
To investigate the effect of ecliptasaponin A (ESA) for alleviating dextran sulfate sodium (DSS)-induced inflammatory bowel disease (IBD) in mice and the underlying mechanism.
METHODS:
Twenty-four male C57BL/6 mice (8-10 weeks old) were equally randomized into control group, DSS-induced IBD model group, and DSS+ESA (50 mg/kg) treatment group. Disease activity index (DAI), colon length and spleen index of the mice were measured, and intestinal pathology was examined with HE staining. The expressions of inflammatory mediators (TNF-α, IL-6, and iNOS) in the colon mucosa were detected using ELISA and RT-qPCR, and intestinal barrier integrity was assessed using AB-PAS staining and by detecting ZO-1 and claudin-1 expressions using immunofluorescence staining and Western blotting. In cultured RAW264.7 macrophages, the effects of treatment with 50 μmol/L ESA, alone or in combination with 20 μmol/L RO8191 (a JAK2/STAT3 pathway activator), on M1 polarization of the cells induced by LPS and IFN-γ stimulation and expressions of JAK2/STAT3 pathway proteins were analyzed using flow cytometry and Western blotting.
RESULTS:
In the mouse models of DSS-induced IBD, ESA treatment significantly alleviated body weight loss and colon shortening, reduced DAI, spleen index and histological scores, and ameliorated inflammatory cell infiltration in the colon tissue. ESA treatment also suppressed TNF‑α, IL-6 and iNOS expressions, protected the goblet cells and the integrity of the mucus and mechanical barriers, and upregulated the expressions of ZO-1 and claudin-1. ESA treatment obviously decreased CD86+ M1 polarization in the mesenteric lymph nodes of IBD mice and in LPS and IFN-γ-induced RAW264.7 cells, and significantly reduced p-JAK2 and p-STAT3 expressions in both the mouse models and RAW264.7 cells. Treatment with RO8191 caused reactivation of JAK2/STAT3 and strongly attenuated the inhibitory effect of ESA on CD86+ polarization in RAW264.7 cells.
CONCLUSIONS
ESA alleviates DSS-induced colitis in mice by suppressing JAK2/STAT3-mediated M1 macrophage polarization and mitigating inflammation-driven intestinal barrier damage.
Animals
;
Mice
;
Janus Kinase 2/metabolism*
;
STAT3 Transcription Factor/metabolism*
;
Mice, Inbred C57BL
;
Male
;
Dextran Sulfate
;
Macrophages/cytology*
;
Colitis/metabolism*
;
Saponins/pharmacology*
;
Signal Transduction/drug effects*
;
RAW 264.7 Cells
;
Triterpenes/pharmacology*
;
Interleukin-6/metabolism*
4.Kuwanon G inhibits growth,migration and invasion of gastric cancer cells by regulating the PI3K/AKT/mTOR pathway
Zhijun GENG ; Jingjing YANG ; Minzhu NIU ; Xinyue LIU ; Jinran SHI ; Yike LIU ; Xinyu YAO ; Yulu ZHANG ; Xiaofeng ZHANG ; Jianguo HU
Journal of Southern Medical University 2024;44(8):1476-1484
Objective To investigate the effects of kuwanon G(KG)on proliferation,apoptosis,migration and invasion of gastric cancer cells and the molecular mechanisms.Methods The effects of KG on proliferation and growth of gastric cancer cells were assessed with CCK-8 assay and cell clone formation assay,by observing tumor formation on the back of nude mice and using immunohistochemical analysis of Ki-67.The effect of KG on cell apoptosis was analyzed using Annexin V-FITC/PI apoptosis detection kit,Western blotting and TUNEL staining.The effects of KG on cell migration and invasion were detected using Transwell migration and invasion assay and Western blotting for matrix metalloproteinase(MMP).The role of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)pathway in KG-mediated regulation of gastric cancer cell proliferation,migration,and invasion was verified by Western blotting and rescue assay.Results KG significantly inhibited proliferation and reduced clone formation ability of gastric cancer cells in a concentration-dependent manner(P<0.05).KG treatment also increased apoptosis,enhanced the expressions of cleaved caspase-3 and Bax,down-regulated Bcl-2,lowered migration and invasion capacities and inhibited the expression of MMP2 and MMP9 in gastric cancer cells(P<0.05).Mechanistic validation showed that KG inhibited the activation of the PI3K/AKT/mTOR pathway,and IGF-1,an activator of the PI3K/AKT/mTOR pathway,reversed the effects of KG on proliferation,migration and invasion of gastric cancer cells(P<0.05).Conclusion KG inhibits proliferation,migration and invasion and promotes apoptosis of gastric cancer cells at least in part by inhibiting the activation of the PI3K/AKT/mTOR pathway.
5.Kuwanon G inhibits growth,migration and invasion of gastric cancer cells by regulating the PI3K/AKT/mTOR pathway
Zhijun GENG ; Jingjing YANG ; Minzhu NIU ; Xinyue LIU ; Jinran SHI ; Yike LIU ; Xinyu YAO ; Yulu ZHANG ; Xiaofeng ZHANG ; Jianguo HU
Journal of Southern Medical University 2024;44(8):1476-1484
Objective To investigate the effects of kuwanon G(KG)on proliferation,apoptosis,migration and invasion of gastric cancer cells and the molecular mechanisms.Methods The effects of KG on proliferation and growth of gastric cancer cells were assessed with CCK-8 assay and cell clone formation assay,by observing tumor formation on the back of nude mice and using immunohistochemical analysis of Ki-67.The effect of KG on cell apoptosis was analyzed using Annexin V-FITC/PI apoptosis detection kit,Western blotting and TUNEL staining.The effects of KG on cell migration and invasion were detected using Transwell migration and invasion assay and Western blotting for matrix metalloproteinase(MMP).The role of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)pathway in KG-mediated regulation of gastric cancer cell proliferation,migration,and invasion was verified by Western blotting and rescue assay.Results KG significantly inhibited proliferation and reduced clone formation ability of gastric cancer cells in a concentration-dependent manner(P<0.05).KG treatment also increased apoptosis,enhanced the expressions of cleaved caspase-3 and Bax,down-regulated Bcl-2,lowered migration and invasion capacities and inhibited the expression of MMP2 and MMP9 in gastric cancer cells(P<0.05).Mechanistic validation showed that KG inhibited the activation of the PI3K/AKT/mTOR pathway,and IGF-1,an activator of the PI3K/AKT/mTOR pathway,reversed the effects of KG on proliferation,migration and invasion of gastric cancer cells(P<0.05).Conclusion KG inhibits proliferation,migration and invasion and promotes apoptosis of gastric cancer cells at least in part by inhibiting the activation of the PI3K/AKT/mTOR pathway.
6.Asperosaponin VI alleviates TNBS-induced Crohn's disease-like colitis in mice by reducing intestinal epithelial cell apoptosis via inhibiting the PI3K/AKT/NF-κB signaling pathway.
Minzhu NIU ; Lixia YIN ; Ting DUAN ; Ju HUANG ; Jing LI ; Zhijun GENG ; Jianguo HU ; Chuanwang SONG
Journal of Southern Medical University 2024;44(12):2335-2346
OBJECTIVES:
To investigate the effects of asperosaponin VI (AVI) on intestinal epithelial cell apoptosis and intestinal barrier function in a mouse model of Crohn's disease (CD)-like colitis and explore its mechanisms.
METHODS:
Male C57BL/6 mice with TNBS-induced CD-like colitis were treated with saline or AVI (daily dose 150 mg/kg) by gavage for 6 days. The changes in body weight, colon length, DAI scores, and colon pathologies of the mice were observed, and the expressions of inflammatory factors and tight injunction proteins were detected using ELISA and RT-qPCR. The effects of AVI on barrier function and apoptosis of mouse intestinal epithelial cells and TNF‑α‑treated Caco-2 cells were analyzed using immunofluorescence staining, TUNEL assay, and Western blotting. Network pharmacology, TUNEL assay, and Western blotting were performed to explore and validate the therapeutic mechanisms of AVI for CD.
RESULTS:
In the mouse models of CD-like colitis, AVI significantly improved body weight loss, colon shortening and DAI and tissue inflammation scores, alleviated intestinal villi and goblet cell injuries, and lowered the expressions of inflammatory factors. AVI treatment significantly reduced the loss of tight junction proteins and apoptosis in both mouse intestinal epithelial cells and TNF‑α-stimulated Caco-2 cells. KEGG enrichment pathway analysis suggested that the therapeutic effect of AVI on CD was associated with inhibition of PI3K/AKT/NF-κB pathway activation, which was confirmed by lowered expressions of p-PI3K, p-AKT, and p-p65 in AVI-treated mouse models and Caco-2 cells. In Caco-2 cells, Recilisib significantly blocked the inhibitory effect of AVI on the PI3K/AKT/NF-κB pathway and TNF-α-induced apoptosis, and AKT1 knockdown experiment confirmed the role of the PI3K/AKT pathway for mediating the activation of downstream NF-κB signaling.
CONCLUSIONS
AVI can improve TNBS-induced CD-like colitis in mice by reducing intestinal epithelial cell apoptosis and intestinal barrier damage via inhibiting the PI3K/AKT/NF-κB signaling pathway.
Animals
;
Saponins/therapeutic use*
;
Mice
;
Crohn Disease/metabolism*
;
Apoptosis/drug effects*
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Mice, Inbred C57BL
;
Male
;
Humans
;
Caco-2 Cells
;
Phosphatidylinositol 3-Kinases/metabolism*
;
NF-kappa B/metabolism*
;
Colitis/drug therapy*
;
Disease Models, Animal
;
Epithelial Cells/drug effects*
;
Trinitrobenzenesulfonic Acid
;
Intestinal Mucosa/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
7.Cux1+ proliferative basal cells promote epidermal hyperplasia in chronic dry skin disease identified by single-cell RNA transcriptomics
Minhua HUANG ; Ning HUA ; Siyi ZHUANG ; Qiuyuan FANG ; Jiangming SHANG ; Zhen WANG ; Xiaohua TAO ; Jianguo NIU ; Xiangyao LI ; Peilin YU ; Wei YANG
Journal of Pharmaceutical Analysis 2023;13(7):745-759
Pathological dry skin is a disturbing and intractable healthcare burden,characterized by epithelial hy-perplasia and severe itch.Atopic dermatitis(AD)and psoriasis models with complications of dry skin have been studied using single-cell RNA sequencing(scRNA-seq).However,scRNA-seq analysis of the dry skin mouse model(acetone/ether/water(AEW)-treated model)is still lacking.Here,we used scRNA-seq and in situ hybridization to identify a novel proliferative basal cell(PBC)state that exclusively expresses transcription factor CUT-like homeobox 1(Cux1).Further in vitro study demonstrated that Cux1 is vital for keratinocyte proliferation by regulating a series of cyclin-dependent kinases(CDKs)and cyclins.Clinically,Cux1+PBCs were increased in patients with psoriasis,suggesting that Cux1+ PBCs play an important part in epidermal hyperplasia.This study presents a systematic knowledge of the tran-scriptomic changes in a chronic dry skin mouse model,as well as a potential therapeutic target against dry skin-related dermatoses.
8.Expert consensus on dental caries management.
Lei CHENG ; Lu ZHANG ; Lin YUE ; Junqi LING ; Mingwen FAN ; Deqin YANG ; Zhengwei HUANG ; Yumei NIU ; Jianguo LIU ; Jin ZHAO ; Yanhong LI ; Bin GUO ; Zhi CHEN ; Xuedong ZHOU
International Journal of Oral Science 2022;14(1):17-17
Dental Caries is a kind of chronic oral disease that greatly threaten human being's health. Though dentists and researchers struggled for decades to combat this oral disease, the incidence and prevalence of dental caries remain quite high. Therefore, improving the disease management is a key issue for the whole population and life cycle management of dental caries. So clinical difficulty assessment system of caries prevention and management is established based on dental caries diagnosis and classification. Dentists should perform oral examination and establish dental records at each visit. When treatment plan is made on the base of caries risk assessment and carious lesion activity, we need to work out patient‑centered and personalized treatment planning to regain oral microecological balance, to control caries progression and to restore the structure and function of the carious teeth. And the follow-up visits are made based on personalized caries management. This expert consensus mainly discusses caries risk assessment, caries treatment difficulty assessment and dental caries treatment plan, which are the most important parts of caries management in the whole life cycle.
Consensus
;
Dental Care
;
Dental Caries/prevention & control*
;
Humans
;
Prevalence
9.Research advances of the prognostic value of onodera prognostic nutrition index for mali-gnant tumors of digestive systems
Xueyan CHEN ; Jianliang QIAO ; Jun LI ; Jianxiang NIU ; Jianguo ZHAO ; Sai HAN ; Xingkai MENG
Chinese Journal of Digestive Surgery 2022;21(10):1390-1394
Onodera prognostic nutrition index (OPNI) is a simple and effective parameter. It is calculated by serum albumin level and peripheral blood lymphocyte count. Initially, OPNI is used to assess preoperative nutritional status and surgical risk. In recent years, researchers have found that OPNI is related to the prognosis of many tumors. Simple and accurate prognosis evaluation can help to select treatment methods for digestive system malignant tumors, determine the best pre-operative treatment time and operation time, and improve the survival rate of patients with diges-tive system malignant tumors. The authors review the related literatures at home and abroad, and summarize the research advances in the prognostic value of OPNI for malignant tumors of digestive systems.
10.Measurement and evaluation of thyroid 131I activity in iodine treatment workers
Tiantian LI ; Peng LI ; Weihang SUN ; Nan MIN ; Fang LIU ; Zhen LI ; Jianguo ZHU ; Fei NIU
Chinese Journal of Radiological Medicine and Protection 2022;42(11):888-891
Objective:To understand the 131I activity in thyroid of therapy workers in nuclear medicine department, and estimate the annual committed effective dose, in order to analyze the internal exposure of them. Methods:Six hospitals were investigated and 131I activity of thyroid was measured. The detection rate and activity value of thyroid 131I activity of therapy workers in nuclear medicine department were obtained from the six hospitals, and then the intake and annual committed effective dose were calculated. Results:A total of 63 iodine therapy workers from six hospitals were measured and 131I was detected for 52 workers among them, with the detection rate of 83% and 131I activities mostly lower than 200 Bq. The estimated annual committed effective dose ranged from 0.23 to 7.78 mSv. The annual committed effective dose to 84.6% of the workers was less than 2 mSv. Conclusions:Iodine therapy workers in nuclear medicine department should receive routine internal exposure personal monitoring, and the radiation protection system in all hospitals needs to be further improved.

Result Analysis
Print
Save
E-mail