1.Alterations in Spontaneous Brain Activity in Drug-Naïve First-Episode Schizophrenia: An Anatomical/Activation Likelihood Estimation Meta-Analysis
Xiaolei QIU ; Rongrong ZHANG ; Lu WEN ; Fuli JIANG ; Hongjun MAO ; Wei YAN ; Shiping XIE ; Xinming PAN
Psychiatry Investigation 2022;19(8):606-613
Objective:
The etiology of schizophrenia is unknown and is associated with abnormal spontaneous brain activity. There are no consistent results regarding the change in spontaneous brain activity of people with schizophrenia. In this study, we determined the specific changes in the amplitude of low-frequency fluctuation/fractional amplitude of low-frequency fluctuation (ALFF/fALFF) and regional homogeneity (ReHo) in patients with drug-naïve first-episode schizophrenia (Dn-FES).
Methods:
A comprehensive search of databases such as PubMed, Web of Science, and Embase was conducted to find articles on resting-state functional magnetic resonance imaging using ALFF/fALFF and ReHo in schizophrenia patients compared to healthy controls (HCs) and then, anatomical/activation likelihood estimation was performed.
Results:
Eighteen eligible studies were included in this meta-analysis. Compared to the spontaneous brain activity of HCs, we found changes in spontaneous brain activity in Dn-FES based on these two methods, mainly including the frontal lobe, putamen, lateral globus pallidus, insula, cerebellum, and posterior cingulate cortex.
Conclusion
We found that widespread abnormalities of spontaneous brain activity occur in the early stages of the onset of schizophrenia and may provide a reference for the early intervention of schizophrenia.
2.Effects of normal mitochondrial transplantation on proliferation, apoptosis and stemness of triple-negative breast cancer cells
Liangliang MA ; Ke ZHANG ; Jiangning LU ; Lixin SUN ; Long YU ; Yuliang RAN ; Lichao SUN
Chinese Journal of Oncology 2024;46(9):878-888
Objectives:To observe the mitochondrial morphology of normal and triple-negative breast cancer cells, extract mitochondria from normal cells, and investigate the effects of mitochondrial transplantation on proliferation, apoptosis, and stemness of triple-negative breast cancer cells.Methods:The morphology of mitochondria was observed by transmission electron microscope. Mitochondria were extracted by mitochondrial extraction kit, mitochondrial protein was identified by western blot, and mitochondrial activity was detected by mitochondrial membrane potential detection kit. MitoTracker Green or MitoTracker Deep Red fluorescent probes were used to label the mitochondria of living cells, and the degree of mitochondria entering LTT cells was observed by confocal laser microscopy at 12, 24, and 96 hours. The effects of mitochondrial transplantation on proliferation, apoptosis, and stemness of breast cancer cells were examined by CCK8, colony formation assay, flow cytometry, and sphere formation assay after 24 hours of mitochondrial transplantation.Results:The mitochondria of normal cells were rod-shaped or elongated, while the mitochondria of triple-negative breast cancer cells were swollen and vacuolated. Western blot results showed that cytochrome c oxidase subunit I (MT-CO1) protein encoded by mitochondria was present in the isolated mitochondria. The content of heat shock protein 60 (HSP60) was higher in mitochondria than that in cytoplasm. The result of the multi-mode microplate reader showed that the content of mitochondrial J-aggregates/monomer was 1.67±0.06, which was significantly higher than 0.35±0.04 of the control group ( P<0.001). Exogenous mitochondria were observed in LTT cells at 12, 24, and 96 hours after mitochondrial transplantation. The results of the CCK8 experiment showed that OD450 of LTT cells was 0.27±0.13 after 48 hours transplantation, which was lower than 0.62±0.36 of the control group ( P=0.023). The OD450 of MDA-MB-468 cells was 0.30±0.03, which was lower than 0.65±0.10 of the control group ( P=0.004). After 120 hours of mitochondrial transplantation, OD450 in both groups was still significantly lower than that in the control group (P<0.01). The number of clones formed by mitochondrial transplantation of LTT cells was 21.33±7.31, which was lower than 35.22±13.59 of the control group ( P=0.016). Flow cytometry showed that the early apoptosis rate of LTT cells was (30.07±2.15)% after 24 hours of mitochondrial transplantation, which was higher than 2.07±1.58 of the control group ( P<0.001). The proportion of early apoptosis in MDA-MB-468 cells was 24.47%±5.22%, which was higher than (7.83±2.06)% in the control group ( P=0.007). In addition, the number of mitochondria transplanted LTT cells into the cell sphere was 46.25±5.40, which was significantly lower than 62.58±6.43 of the control group ( P<0.001). Conclusion:Normal mitochondria can enter triple-negative breast cancer cells by co-culture, inhibit the proliferation and stemness of triple-negative breast cancer cells, and promote the apoptosis of triple-negative breast cancer cells.
3.Effects of normal mitochondrial transplantation on proliferation, apoptosis and stemness of triple-negative breast cancer cells
Liangliang MA ; Ke ZHANG ; Jiangning LU ; Lixin SUN ; Long YU ; Yuliang RAN ; Lichao SUN
Chinese Journal of Oncology 2024;46(9):878-888
Objectives:To observe the mitochondrial morphology of normal and triple-negative breast cancer cells, extract mitochondria from normal cells, and investigate the effects of mitochondrial transplantation on proliferation, apoptosis, and stemness of triple-negative breast cancer cells.Methods:The morphology of mitochondria was observed by transmission electron microscope. Mitochondria were extracted by mitochondrial extraction kit, mitochondrial protein was identified by western blot, and mitochondrial activity was detected by mitochondrial membrane potential detection kit. MitoTracker Green or MitoTracker Deep Red fluorescent probes were used to label the mitochondria of living cells, and the degree of mitochondria entering LTT cells was observed by confocal laser microscopy at 12, 24, and 96 hours. The effects of mitochondrial transplantation on proliferation, apoptosis, and stemness of breast cancer cells were examined by CCK8, colony formation assay, flow cytometry, and sphere formation assay after 24 hours of mitochondrial transplantation.Results:The mitochondria of normal cells were rod-shaped or elongated, while the mitochondria of triple-negative breast cancer cells were swollen and vacuolated. Western blot results showed that cytochrome c oxidase subunit I (MT-CO1) protein encoded by mitochondria was present in the isolated mitochondria. The content of heat shock protein 60 (HSP60) was higher in mitochondria than that in cytoplasm. The result of the multi-mode microplate reader showed that the content of mitochondrial J-aggregates/monomer was 1.67±0.06, which was significantly higher than 0.35±0.04 of the control group ( P<0.001). Exogenous mitochondria were observed in LTT cells at 12, 24, and 96 hours after mitochondrial transplantation. The results of the CCK8 experiment showed that OD450 of LTT cells was 0.27±0.13 after 48 hours transplantation, which was lower than 0.62±0.36 of the control group ( P=0.023). The OD450 of MDA-MB-468 cells was 0.30±0.03, which was lower than 0.65±0.10 of the control group ( P=0.004). After 120 hours of mitochondrial transplantation, OD450 in both groups was still significantly lower than that in the control group (P<0.01). The number of clones formed by mitochondrial transplantation of LTT cells was 21.33±7.31, which was lower than 35.22±13.59 of the control group ( P=0.016). Flow cytometry showed that the early apoptosis rate of LTT cells was (30.07±2.15)% after 24 hours of mitochondrial transplantation, which was higher than 2.07±1.58 of the control group ( P<0.001). The proportion of early apoptosis in MDA-MB-468 cells was 24.47%±5.22%, which was higher than (7.83±2.06)% in the control group ( P=0.007). In addition, the number of mitochondria transplanted LTT cells into the cell sphere was 46.25±5.40, which was significantly lower than 62.58±6.43 of the control group ( P<0.001). Conclusion:Normal mitochondria can enter triple-negative breast cancer cells by co-culture, inhibit the proliferation and stemness of triple-negative breast cancer cells, and promote the apoptosis of triple-negative breast cancer cells.
4.Effects of Compound Danshen Dripping Pills on Ventricular Remodeling and Cardiac Function after Acute Anterior Wall ST-Segment Elevation Myocardial Infarction (CODE-AAMI): Protocol for a Randomized Placebo-Controlled Trial.
Yu-Jie WU ; Bo DENG ; Si-Bo WANG ; Rui QIAO ; Xi-Wen ZHANG ; Yuan LU ; Li WANG ; Shun-Zhong GU ; Yu-Qing ZHANG ; Kai-Qiao LI ; Zong-Liang YU ; Li-Xing WU ; Sheng-Biao ZHAO ; Shuang-Lin ZHOU ; Yang YANG ; Lian-Sheng WANG
Chinese journal of integrative medicine 2023;29(12):1059-1065
BACKGROUND:
Ventricular remodeling after acute anterior wall ST-segment elevation myocardial infarction (AAMI) is an important factor in occurrence of heart failure which additionally results in poor prognosis. Therefore, the treatment of ventricular remodeling needs to be further optimized. Compound Danshen Dripping Pills (CDDP), a traditional Chinese medicine, exerts a protective effect on microcirculatory disturbance caused by ischemia-reperfusion injury and attenuates ventricular remodeling after myocardial infarction.
OBJECTIVE:
This study is designed to evaluate the efficacy and safety of CDDP in improving ventricular remodeling and cardiac function after AAMI on a larger scale.
METHODS:
This study is a multi-center, randomized, double-blind, placebo-controlled, parallel-group clinical trial. The total of 268 patients with AAMI after primary percutaneous coronary intervention (pPCI) will be randomly assigned 1:1 to the CDDP group (n=134) and control group (n=134) with a follow-up of 48 weeks. Both groups will be treated with standard therapy of ST-segment elevation myocardial infarction (STEMI), with the CDDP group administrating 20 tablets of CDDP before pPCI and 10 tablets 3 times daily after pPCI, and the control group treated with a placebo simultaneously. The primary endpoint is 48-week echocardiographic outcomes including left ventricular ejection fraction (LVEF), left ventricular end-diastolic volume index (LVEDVI), and left ventricular end-systolic volume index (LVESVI). The secondary endpoint includes the change in N terminal pro-B-type natriuretic peptide (NT-proBNP) level, arrhythmias, and cardiovascular events (death, cardiac arrest, or cardiopulmonary resuscitation, rehospitalization due to heart failure or angina pectoris, deterioration of cardiac function, and stroke). Investigators and patients are both blinded to the allocated treatment.
DISCUSSION
This prospective study will investigate the efficacy and safety of CDDP in improving ventricular remodeling and cardiac function in patients undergoing pPCI for a first AAMI. Patients in the CDDP group will be compared with those in the control group. If certified to be effective, CDDP treatment in AAMI will probably be advised on a larger scale. (Trial registration No. NCT05000411).
Humans
;
ST Elevation Myocardial Infarction/therapy*
;
Stroke Volume
;
Ventricular Remodeling
;
Prospective Studies
;
Microcirculation
;
Ventricular Function, Left
;
Myocardial Infarction/etiology*
;
Treatment Outcome
;
Percutaneous Coronary Intervention/adverse effects*
;
Heart Failure/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Randomized Controlled Trials as Topic
;
Multicenter Studies as Topic
5.The application of intraoperative neurophysiological monitoring in selective dorsal neurotomy for primary premature ejaculation: a prospective single-center study.
Qing-Lai TANG ; Tao SONG ; You-Feng HAN ; Bai-Bing YANG ; Jian-Huai CHEN ; Zhi-Peng XU ; Chun-Lu XU ; Yang XU ; Wen YU ; Wei QIU ; Jiong SHI ; En-Si ZHANG ; Yu-Tian DAI
Asian Journal of Andrology 2023;25(1):137-142
Selective dorsal neurotomy (SDN) is a surgical treatment for primary premature ejaculation (PE), but there is still no standard surgical procedure for selecting the branches of the dorsal penile nerves to be removed. We performed this study to explore the value of intraoperative neurophysiological monitoring (IONM) of the penile sensory-evoked potential (PSEP) for standard surgical procedures in SDN. One hundred and twenty primary PE patients undergoing SDN were selected as the PE group and 120 non-PE patients were selected as the normal group. The PSEP was monitored and compared between the two groups under both natural and general anesthesia (GA) states. In addition, patients in the PE group were randomly divided into the IONM group and the non-IONM group. During SDN surgery, PSEP parameters of the IONM group were recorded and analyzed. The differences in PE-related outcome measurements between the perioperative period and 3 months' postoperation were compared for the PE patients, and the differences in effectiveness and complications between the IONM group and the non-IONM group were compared. The results showed that the average latency of the PSEP in the PE group was shorter than that in the normal group under both natural and GA states (P < 0.001). Three months after surgery, the significant effective rates in the IONM and non-IONM groups were 63.6% and 34.0%, respectively (P < 0.01), and the difference in complications between the two groups was significant (P < 0.05). IONM might be useful in improving the short-term therapeutic effectiveness and reducing the complications of SDN.
Male
;
Humans
;
Premature Ejaculation/surgery*
;
Intraoperative Neurophysiological Monitoring/methods*
;
Prospective Studies
;
Neurosurgical Procedures/methods*
;
Penis/surgery*
;
Retrospective Studies