1.Mechanism of Yizhi Qingxin Prescription in Regulating PKA/CaN Pathway to Improve Cognitive Function in Alzheimer's Disease Model Mice
Xiaochen GUO ; Jiangang LIU ; Dandan SHI ; Ziqi NING ; Yaoyao ZHANG ; Fang LIU ; Meixia LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):97-108
ObjectiveTo explore the mechanism by which Yizhi Qingxin prescription improves mitochondrial dysfunction in Alzheimer's disease (AD) through regulating mitochondrial Ca2+ homeostasis and kinetic balance based on the protein kinase A (PKA)/calcineurin (CaN) signaling pathway. MethodsSixty three-month-old amyloid precursor protein (APP)/presenilin 1 (PS1) double transgenic mice were randomly divided into a model group, a donepezil group(0.65 mg·kg-1), a low-dose Yizhi Qingxin prescription group (YQF-L,2.6 g·kg-1), a medium-dose Yizhi Qingxin prescription group (YQF-M,5.2 g·kg-1), and a high-dose Yizhi Qingxin prescription group (YQF-H,10.4 g·kg-1), with 12 mice in each group. Twelve C57BL/6J mice with the same genetic background served as a normal group. Each treatment group received gavage administration daily, with the model and normal groups receiving equal volume of physiological saline. Intervention continued for 12 consecutive weeks. The learning and memory abilities of the mice were assessed using the novel object recognition (NOR) and Morris water maze (MWM) tests. Hematoxylin-eosin (HE)/Nissl staining was used to observe histopathological changes in the hippocampus. Transmission electron microscopy (TEM) was used to observe mitochondrial ultrastructure. Fluo-4 acetoxymethyl ester (Fluo-4 AM) Ca2+ probe was used to measure intracellular Ca2+ concentration in brain tissue. Western blot was used to determine the protein expression of PKA, CaN, sodium/calcium/lithium exchanger (NCLX), mitochondrial calcium uniporter (MCU), calmodulin (CaM), dynamin-related protein 1 (Drp1), and phosphorylated dynamin-related protein 1 (serine 637 site) [p-Drp1(S637)] in the hippocampus. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to measure the expression of PKA, CaN, CaM, NCLX, MCU, and Drp1 mRNAs. ResultsCompared with those in the normal group, the recognition index (RI) of the model group decreased (P0.01), and the number of crossings through the original platform area, the duration of stay in the target quadrant, and the distance were reduced (P0.01). The protein expression of PKA, NCLX, and p-DRP1 (ser637) significantly decreased (P0.05), and the mRNA expression of PKA and NCLX significantly decreased (P0.05). The escape latency (EL) was prolonged (P0.05), and the intracellular Ca2+ level significantly increased (P0.01). The protein expression of CaN, CaM, MCU, and Drp1, as well as the mRNA expression of CaN, MCU, and Drp1, significantly increased (P0.05). After intervention with Donepezil and Yizhi Qingxin prescription, compared with that in the model group, the RI of the treatment group significantly increased (P0.05), and the number of crossings through the platform and the duration of stay in the target quadrant significantly increased (P0.05). The protein expression of PKA, NCLX, and p-Drp1 (ser637) and the mRNA expression of PKA and NCLX significantly increased (P0.05). On the 4th and 5th days, the EL was shortened (P0.05), and the intracellular Ca2+ level decreased (P0.05). The protein expression of CaN, CaM, MCU, and Drp1 and the mRNA expression of CaN, MCU, and Drp1 significantly decreased (P0.05). ConclusionYizhi Qingxin prescription regulates the PKA/CaN pathway, upregulates the expression of PKA, NCLX, and p-Drp1 (ser637) proteins, reduces the expression of CaN, CaM, MCU, and Drp1 proteins, and regulates Ca2+ homeostasis and mitochondrial dynamic balance, thereby enhancing the spatial learning and memory abilities of AD mice.
2.Mechanism of Yizhi Qingxin Prescription in Regulating PKA/CaN Pathway to Improve Cognitive Function in Alzheimer's Disease Model Mice
Xiaochen GUO ; Jiangang LIU ; Dandan SHI ; Ziqi NING ; Yaoyao ZHANG ; Fang LIU ; Meixia LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):97-108
ObjectiveTo explore the mechanism by which Yizhi Qingxin prescription improves mitochondrial dysfunction in Alzheimer's disease (AD) through regulating mitochondrial Ca2+ homeostasis and kinetic balance based on the protein kinase A (PKA)/calcineurin (CaN) signaling pathway. MethodsSixty three-month-old amyloid precursor protein (APP)/presenilin 1 (PS1) double transgenic mice were randomly divided into a model group, a donepezil group(0.65 mg·kg-1), a low-dose Yizhi Qingxin prescription group (YQF-L,2.6 g·kg-1), a medium-dose Yizhi Qingxin prescription group (YQF-M,5.2 g·kg-1), and a high-dose Yizhi Qingxin prescription group (YQF-H,10.4 g·kg-1), with 12 mice in each group. Twelve C57BL/6J mice with the same genetic background served as a normal group. Each treatment group received gavage administration daily, with the model and normal groups receiving equal volume of physiological saline. Intervention continued for 12 consecutive weeks. The learning and memory abilities of the mice were assessed using the novel object recognition (NOR) and Morris water maze (MWM) tests. Hematoxylin-eosin (HE)/Nissl staining was used to observe histopathological changes in the hippocampus. Transmission electron microscopy (TEM) was used to observe mitochondrial ultrastructure. Fluo-4 acetoxymethyl ester (Fluo-4 AM) Ca2+ probe was used to measure intracellular Ca2+ concentration in brain tissue. Western blot was used to determine the protein expression of PKA, CaN, sodium/calcium/lithium exchanger (NCLX), mitochondrial calcium uniporter (MCU), calmodulin (CaM), dynamin-related protein 1 (Drp1), and phosphorylated dynamin-related protein 1 (serine 637 site) [p-Drp1(S637)] in the hippocampus. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to measure the expression of PKA, CaN, CaM, NCLX, MCU, and Drp1 mRNAs. ResultsCompared with those in the normal group, the recognition index (RI) of the model group decreased (P0.01), and the number of crossings through the original platform area, the duration of stay in the target quadrant, and the distance were reduced (P0.01). The protein expression of PKA, NCLX, and p-DRP1 (ser637) significantly decreased (P0.05), and the mRNA expression of PKA and NCLX significantly decreased (P0.05). The escape latency (EL) was prolonged (P0.05), and the intracellular Ca2+ level significantly increased (P0.01). The protein expression of CaN, CaM, MCU, and Drp1, as well as the mRNA expression of CaN, MCU, and Drp1, significantly increased (P0.05). After intervention with Donepezil and Yizhi Qingxin prescription, compared with that in the model group, the RI of the treatment group significantly increased (P0.05), and the number of crossings through the platform and the duration of stay in the target quadrant significantly increased (P0.05). The protein expression of PKA, NCLX, and p-Drp1 (ser637) and the mRNA expression of PKA and NCLX significantly increased (P0.05). On the 4th and 5th days, the EL was shortened (P0.05), and the intracellular Ca2+ level decreased (P0.05). The protein expression of CaN, CaM, MCU, and Drp1 and the mRNA expression of CaN, MCU, and Drp1 significantly decreased (P0.05). ConclusionYizhi Qingxin prescription regulates the PKA/CaN pathway, upregulates the expression of PKA, NCLX, and p-Drp1 (ser637) proteins, reduces the expression of CaN, CaM, MCU, and Drp1 proteins, and regulates Ca2+ homeostasis and mitochondrial dynamic balance, thereby enhancing the spatial learning and memory abilities of AD mice.
3.Mechanism of Danshenol A in Alleviating Myocardial Ischemia-reperfusion Injury-induced Ferroptosis of Cardiomyocytes
Lei ZHANG ; Jiangang LIU ; Peili WANG ; Tao GENG ; Die LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):135-144
ObjectiveTo investigate the mechanism of danshenol A (DA) pretreatment in alleviating myocardial ischemia-reperfusion injury (MIRI) by regulating cardiomyocyte ferroptosis by in vivo and in vitro experiments. MethodsA MIRI model was established in SD rats, and an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed with H9C2 cells. Both models were treated with DA. H9C2 cells were allocated into blank, model (OGD/R), DA, ferroptosis inducer (erastin), and ferroptosis inhibitor (Fer-1) groups. Cell viability was assessed by the methyl thiazolyl tetrazolium (MTT) assay. Biochemical assays were performed to measure the superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), and ferrous ion (Fe2+) levels. Dihydroethidium (DHE) fluorescence assay was adopted to quantify the reactive oxygen species (ROS) level. Real-time PCR and Western blot were employed to quantify the mRNA and protein levels, respectively, of prostaglandin-endoperoxide synthase 2 (PTGS2), glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), and acyl-coA synthetase long-chain family 4 (ACSL4). Sixty SPF-grade healthy male SD rats were randomly assigned to control, model (MIRI), DA, erastin, and Fer-1 groups. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the serum levels of cardiac troponin I (cTnI), lactate dehydrogenase (LDH), and creatine kinase (CK). Histopathological changes in the myocardial tissue were observed by hematoxylin-eosin (HE) staining. Cardiomyocyte apoptosis was detected by terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL). The effect of DA on cardiomyocyte ferroptosis were observed and analyzed by in vivo and in vitro experiments. ResultsIn vitro experiment: compared with the blank group, the OGD/R model group showed reduced cell viability, elevated levels of ROS, MDA, and Fe2+, up-regulated mRNA and protein levels of ACSL4, lowered levels of SOD and GSH, and down-regulated mRNA and protein levels of PTGS2, GPX4, and FTH1 (P<0.05,P<0.01). The DA and Fer-1 groups exhibited consistent trends: cell viability, SOD and GSH levels, and the mRNA and protein levels of PTGS2, GPX4, and FTH1 were significantly restored, while the ROS, MDA, and Fe2+ levels, and the mRNA and protein levels of ACSL4 were reduced (P<0.05,P<0.01). In vivo experiment: Compared with the control group, the MIRI model group showed elevated serum levels of cTnI, LDH, and CK, increased cardiomyocyte apoptosis rate, risen levels of ROS, MDA, and Fe2+, and up-regulated mRNA and protein levels of ACSL4. However, both DA and Fer-1 groups exhibited reductions in the indicators above (P<0.05). Compared with the control group, the MIRI model group demonstrated reduced levels of SOD and GSH and down-regulated mRNA and protein levels of PTGS2, GPX4, and FTH1 (P<0.05). In contrast, both DA and Fer-1 upregulated these indicators (P<0.05), effectively reversing the trends in the model group. In addition, the MIRI model group showed swelling of cardiomyocytes, disarrangement of cardiac muscle fibers, and massive inflammatory cell infiltration, which were alleviated in the DA and Fer-1 groups. ConclusionDA alleviates MIRI by inhibiting ferroptosis and inflammation, demonstrating therapeutic potential in acute myocardial infarction.
4.Mechanism of Danshenol A in Alleviating Myocardial Ischemia-reperfusion Injury-induced Ferroptosis of Cardiomyocytes
Lei ZHANG ; Jiangang LIU ; Peili WANG ; Tao GENG ; Die LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):135-144
ObjectiveTo investigate the mechanism of danshenol A (DA) pretreatment in alleviating myocardial ischemia-reperfusion injury (MIRI) by regulating cardiomyocyte ferroptosis by in vivo and in vitro experiments. MethodsA MIRI model was established in SD rats, and an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed with H9C2 cells. Both models were treated with DA. H9C2 cells were allocated into blank, model (OGD/R), DA, ferroptosis inducer (erastin), and ferroptosis inhibitor (Fer-1) groups. Cell viability was assessed by the methyl thiazolyl tetrazolium (MTT) assay. Biochemical assays were performed to measure the superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), and ferrous ion (Fe2+) levels. Dihydroethidium (DHE) fluorescence assay was adopted to quantify the reactive oxygen species (ROS) level. Real-time PCR and Western blot were employed to quantify the mRNA and protein levels, respectively, of prostaglandin-endoperoxide synthase 2 (PTGS2), glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), and acyl-coA synthetase long-chain family 4 (ACSL4). Sixty SPF-grade healthy male SD rats were randomly assigned to control, model (MIRI), DA, erastin, and Fer-1 groups. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the serum levels of cardiac troponin I (cTnI), lactate dehydrogenase (LDH), and creatine kinase (CK). Histopathological changes in the myocardial tissue were observed by hematoxylin-eosin (HE) staining. Cardiomyocyte apoptosis was detected by terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL). The effect of DA on cardiomyocyte ferroptosis were observed and analyzed by in vivo and in vitro experiments. ResultsIn vitro experiment: compared with the blank group, the OGD/R model group showed reduced cell viability, elevated levels of ROS, MDA, and Fe2+, up-regulated mRNA and protein levels of ACSL4, lowered levels of SOD and GSH, and down-regulated mRNA and protein levels of PTGS2, GPX4, and FTH1 (P<0.05,P<0.01). The DA and Fer-1 groups exhibited consistent trends: cell viability, SOD and GSH levels, and the mRNA and protein levels of PTGS2, GPX4, and FTH1 were significantly restored, while the ROS, MDA, and Fe2+ levels, and the mRNA and protein levels of ACSL4 were reduced (P<0.05,P<0.01). In vivo experiment: Compared with the control group, the MIRI model group showed elevated serum levels of cTnI, LDH, and CK, increased cardiomyocyte apoptosis rate, risen levels of ROS, MDA, and Fe2+, and up-regulated mRNA and protein levels of ACSL4. However, both DA and Fer-1 groups exhibited reductions in the indicators above (P<0.05). Compared with the control group, the MIRI model group demonstrated reduced levels of SOD and GSH and down-regulated mRNA and protein levels of PTGS2, GPX4, and FTH1 (P<0.05). In contrast, both DA and Fer-1 upregulated these indicators (P<0.05), effectively reversing the trends in the model group. In addition, the MIRI model group showed swelling of cardiomyocytes, disarrangement of cardiac muscle fibers, and massive inflammatory cell infiltration, which were alleviated in the DA and Fer-1 groups. ConclusionDA alleviates MIRI by inhibiting ferroptosis and inflammation, demonstrating therapeutic potential in acute myocardial infarction.
5.The current situation and quality management countermeasures of pre-hospital medical emergency point-of-care testing in Hangzhou City
SUN Baoyun ; ZHANG Jungen ; BAO Shuhua ; YUAN Yijun ; WANG Jiangang ; WANG Mingjia
Journal of Preventive Medicine 2025;37(6):637-639
Point-of-care testing (POCT) provides key support for clinical decision-making through rapid detection. This article introduces the development background of POCT in the field of pre-hospital emergency, as well as the development status of POCT in Hangzhou City, and analyzes the problems of quality management. Pre-hospital emergency medical institutions in Hangzhou City have been equipped with POCT equipment, and the test items include blood glucose, cardiac troponin, etc. The implementation rates of internal quality control, comparison test, and proficiency testing were 58.2%, 50.3% and 42.6%, respectively. POCT quality management has problems such as unclear responsibility subjects, insufficient professional personnel, and a lack of standardization of the process. It is proposed to build a hierarchical collaborative management system, strengthen the double access mechanism of personnel and equipment, implement the whole process quality control, and build a digital management platform, so as to provide the reference for the high-quality development of POCT in pre-hospital medical emergency institutions.
6.Steroids combined with anticoagulant in acute/subacute severe cerebral venous thrombosis.
Shimin HU ; Yaqin GU ; Tingyu ZHAO ; Kaiyuan ZHANG ; Jingkai LI ; Chen ZHOU ; Haiqing SONG ; Zhi LIU ; Xunming JI ; Jiangang DUAN
Chinese Medical Journal 2025;138(15):1825-1834
BACKGROUND:
Inflammation plays a critical role in severe cerebral venous thrombosis (CVT) pathogenesis, but the benefits of anti-inflammatory therapies remain unclear. This study aimed to investigate the association between steroid therapy combined with anticoagulation and the prognosis of acute/subacute severe CVT patients.
METHODS:
A prospective cohort study enrolled patients with acute/subacute severe CVT at Xuanwu Hospital (July 2020-January 2024). Patients were allocated into steroid and non-steroid groups based on the treatment they received. Functional outcomes (modified Rankin scale [mRS]) were evaluated at admission, discharge, and 6 months after discharge. Serum high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), cerebrospinal fluid (CSF) IL-6, and intracranial pressure were measured at admission and discharge in the steroid group. Fundoscopic Frisén grades were assessed at admission and 6 months after discharge. Univariate and multivariate logistic regression were used to evaluat associations between steroid use and favorable outcomes (mRS ≤2) at the 6-month follow-up. Paired tests assessed changes in hs-CRP and other variables before and after treatment, and Spearman's correlations were used to analyze relationships between these changes and functional improvements.
RESULTS:
A total of 107 and 58 patients in the steroid and non-steroid groups, respectively, were included in the analysis. Compared with the non-steroid group, the steroid group had a higher likelihood of achieving an mRS score of 0-2 (93.5% vs . 82.5%, odds ratio [OR] = 2.98, P = 0.037) at the 6-month follow-up. After adjusting for confounding factors, the result remained consistent. Pulsed steroid therapy did not increase mortality during hospitalization or follow-up, nor did it lead to severe steroid-related complications (all P >0.05). Patients in the steroid group showed a significant reduction in serum hs-CRP, IL-6, CSF IL-6, and intracranial pressure at discharge compared to at admission, as well as a significant reduction in the fundoscopic Frisén grade at the 6-month follow-up compare to at admission (all P <0.001). A reduction in serum inflammatory marker levels during hospitalization positively correlated with improvements in functional outcomes ( P <0.05).
CONCLUSION:
Short-term steroid use may be an effective and safe adjuvant therapy for acute/subacute severe CVT when used alongside standard anticoagulant treatments, which are likely due to suppression of the inflammatory response. However, these findings require further validation in randomized controlled trials.
TRAIL REGISTRATION
ClinicalTrials.gov , NCT05990894.
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Anticoagulants/therapeutic use*
;
C-Reactive Protein/metabolism*
;
Interleukin-6/metabolism*
;
Intracranial Thrombosis/drug therapy*
;
Prospective Studies
;
Steroids/therapeutic use*
;
Venous Thrombosis/drug therapy*
7.Dysregulation of Iron Homeostasis Mediated by FTH Increases Ferroptosis Sensitivity in TP53-Mutant Glioblastoma.
Xuejie HUAN ; Jiangang LI ; Zhaobin CHU ; Hongliang ZHANG ; Lei CHENG ; Peng LUN ; Xixun DU ; Xi CHEN ; Qian JIAO ; Hong JIANG
Neuroscience Bulletin 2025;41(4):569-582
Iron metabolism is a critical factor in tumorigenesis and development. Although TP53 mutations are prevalent in glioblastoma (GBM), the mechanisms by which TP53 regulates iron metabolism remain elusive. We reveal an imbalance iron homeostasis in GBM via TCGA database analysis. TP53 mutations disrupted iron homeostasis in GBM, characterized by elevated total iron levels and reduced ferritin (FTH). The gain-of-function effect triggered by TP53 mutations upregulates itchy E3 ubiquitin-protein ligase (ITCH) protein expression in astrocytes, leading to FTH degradation and an increase in free iron levels. TP53-mut astrocytes were more tolerant to the high iron environment induced by exogenous ferric ammonium citrate (FAC), but the increase in intracellular free iron made them more sensitive to Erastin-induced ferroptosis. Interestingly, we found that Erastin combined with FAC treatment significantly increased ferroptosis. These findings provide new insights for drug development and therapeutic modalities for GBM patients with TP53 mutations from iron metabolism perspectives.
Ferroptosis/drug effects*
;
Humans
;
Iron/metabolism*
;
Glioblastoma/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
;
Homeostasis/physiology*
;
Ferritins/metabolism*
;
Brain Neoplasms/genetics*
;
Mutation
;
Astrocytes/drug effects*
;
Cell Line, Tumor
;
Piperazines/pharmacology*
;
Quaternary Ammonium Compounds/pharmacology*
;
Ferric Compounds
8.Comparison of mid-to-long term outcomes between mitral valve repair and biological valve replacement in patients over 60 with rheumatic mitral valve disease based on a propensity score matching study
Wenbo ZHANG ; Jie HAN ; Tiange LUO ; Baiyu TIAN ; Fei MENG ; Wenjian JIANG ; Yuqing JIAO ; Xiaoming LI ; Jintao FU ; Yichen ZHAO ; Fei LI ; Xu MENG ; Jiangang WANG
Chinese Journal of Surgery 2024;62(11):1016-1023
Objective:To compare and discuss the mid-to-long-term outcomes of mitral valve repair (MVP) versus biological mitral valve replacement (bMVR) in patients aged 60 years and above with rheumatic mitral valve disease.Methods:This is a retrospective cohort study. A total of 765 patients aged 60 years and older, diagnosed with rheumatic mitral valve disease and who underwent MVP or bMVR at Beijing Anzhen Hospital from January 2010 to January 2023, were retrospectively included. Among them, 186 were male and 579 were female, with an age of (66.1±4.5) years (range: 60 to 82 years). Patients were divided into two groups based on the surgical method: the mitral valve repair group (MVP group, n=256) and the bioprosthetic mitral valve replacement group (bMVR group, n=509). A 1∶1 propensity score matching was performed using a caliper value of 0.2 based on preoperative data. Paired sample t-tests, χ2 tests, or Fisher′s exact tests were used for intergroup comparisons. Kaplan-Meier method was employed to plot survival curves and valve-related reoperation rate curves for both groups before and after matching, and Log-rank tests were used to compare the mid-to long-term survival rates and valve-related reoperation rates between the two groups. Results:A total of 765 patients who completed follow-up were ultimately included, with a follow-up period ( M(IQR)) of 5.1(5.0) years (range: 1.0 to 12.9 years). After matching, each group consisted of 256 patients. The incidence of early postoperative atrial fibrillation (39.1% vs. 49.2%, χ2=4.95, P=0.026) and early mortality rates (2.0% vs. 6.2%, χ2=4.97, P=0.026) were lower in the MVP group. Unadjusted Kaplan-Meier analysis showed significantly higher 5-year and 10-year survival rates for the MVP group (92.54% vs. 83.02%, 86.22% vs. 70.19%, Log-rank: P=0.001). After adjustment with propensity scores, the Kaplan-Meier analysis still indicated higher 5-year and 10-year survival rates in the MVP group compared to the bMVR group (92.54% vs. 85.89%, 86.22% vs. 74.83%, Log-rank: P=0.024). There were no significant differences in the rates of valve-related reoperation between the two groups before and after matching (5-year and 10-year reoperation rates pre-matching: 1.75% vs. 0.57%, 5.39% vs. 7.54%, Log-rank: P=0.207; post-matching: 1.75% vs. 0, 5.39% vs. 9.27%, Log-rank: P=0.157). Conclusion:For patients aged 60 years and above with rheumatic mitral valve disease, mitral valve repair offers better mid-to-long-term survival compared to biological valve replacement.
9.Comparison of mid-to-long term outcomes between mitral valve repair and biological valve replacement in patients over 60 with rheumatic mitral valve disease based on a propensity score matching study
Wenbo ZHANG ; Jie HAN ; Tiange LUO ; Baiyu TIAN ; Fei MENG ; Wenjian JIANG ; Yuqing JIAO ; Xiaoming LI ; Jintao FU ; Yichen ZHAO ; Fei LI ; Xu MENG ; Jiangang WANG
Chinese Journal of Surgery 2024;62(11):1016-1023
Objective:To compare and discuss the mid-to-long-term outcomes of mitral valve repair (MVP) versus biological mitral valve replacement (bMVR) in patients aged 60 years and above with rheumatic mitral valve disease.Methods:This is a retrospective cohort study. A total of 765 patients aged 60 years and older, diagnosed with rheumatic mitral valve disease and who underwent MVP or bMVR at Beijing Anzhen Hospital from January 2010 to January 2023, were retrospectively included. Among them, 186 were male and 579 were female, with an age of (66.1±4.5) years (range: 60 to 82 years). Patients were divided into two groups based on the surgical method: the mitral valve repair group (MVP group, n=256) and the bioprosthetic mitral valve replacement group (bMVR group, n=509). A 1∶1 propensity score matching was performed using a caliper value of 0.2 based on preoperative data. Paired sample t-tests, χ2 tests, or Fisher′s exact tests were used for intergroup comparisons. Kaplan-Meier method was employed to plot survival curves and valve-related reoperation rate curves for both groups before and after matching, and Log-rank tests were used to compare the mid-to long-term survival rates and valve-related reoperation rates between the two groups. Results:A total of 765 patients who completed follow-up were ultimately included, with a follow-up period ( M(IQR)) of 5.1(5.0) years (range: 1.0 to 12.9 years). After matching, each group consisted of 256 patients. The incidence of early postoperative atrial fibrillation (39.1% vs. 49.2%, χ2=4.95, P=0.026) and early mortality rates (2.0% vs. 6.2%, χ2=4.97, P=0.026) were lower in the MVP group. Unadjusted Kaplan-Meier analysis showed significantly higher 5-year and 10-year survival rates for the MVP group (92.54% vs. 83.02%, 86.22% vs. 70.19%, Log-rank: P=0.001). After adjustment with propensity scores, the Kaplan-Meier analysis still indicated higher 5-year and 10-year survival rates in the MVP group compared to the bMVR group (92.54% vs. 85.89%, 86.22% vs. 74.83%, Log-rank: P=0.024). There were no significant differences in the rates of valve-related reoperation between the two groups before and after matching (5-year and 10-year reoperation rates pre-matching: 1.75% vs. 0.57%, 5.39% vs. 7.54%, Log-rank: P=0.207; post-matching: 1.75% vs. 0, 5.39% vs. 9.27%, Log-rank: P=0.157). Conclusion:For patients aged 60 years and above with rheumatic mitral valve disease, mitral valve repair offers better mid-to-long-term survival compared to biological valve replacement.
10.A multicenter prospective study on early identification of refractory Mycoplasma pneumoniae pneumonia in children
Dan XU ; Ailian ZHANG ; Jishan ZHENG ; Mingwei YE ; Fan LI ; Gencai QIAN ; Hongbo SHI ; Xiaohong JIN ; Lieping HUANG ; Jiangang MEI ; Guohua MEI ; Zhen XU ; Hong FU ; Jianjun LIN ; Hongzhou YE ; Yan ZHENG ; Lingling HUA ; Min YANG ; Jiangmin TONG ; Lingling CHEN ; Yuanyuan ZHANG ; Dehua YANG ; Yunlian ZHOU ; Huiwen LI ; Yinle LAN ; Yulan XU ; Jinyan FENG ; Xing CHEN ; Min GONG ; Zhimin CHEN ; Yingshuo WANG
Chinese Journal of Pediatrics 2024;62(4):317-322
Objective:To explore potential predictors of refractory Mycoplasma pneumoniae pneumonia (RMPP) in early stage. Methods:The prospective multicenter study was conducted in Zhejiang, China from May 1 st, 2019 to January 31 st, 2020. A total of 1 428 patients with fever >48 hours to <120 hours were studied. Their clinical data and oral pharyngeal swab samples were collected; Mycoplasma pneumoniae DNA in pharyngeal swab specimens was detected. Patients with positive Mycoplasma pneumoniae DNA results underwent a series of tests, including chest X-ray, complete blood count, C-reactive protein, lactate dehydrogenase (LDH), and procalcitonin. According to the occurrence of RMPP, the patients were divided into two groups, RMPP group and general Mycoplasma pneumoniae pneumonia (GMPP) group. Measurement data between the 2 groups were compared using Mann-Whitney U test. Logistic regression analyses were used to examine the associations between clinical data and RMPP. Receiver operating characteristic (ROC) curves were used to analyse the power of the markers for predicting RMPP. Results:A total of 1 428 patients finished the study, with 801 boys and 627 girls, aged 4.3 (2.7, 6.3) years. Mycoplasma pneumoniae DNA was positive in 534 cases (37.4%), of whom 446 cases (83.5%) were diagnosed with Mycoplasma pneumoniae pneumonia, including 251 boys and 195 girls, aged 5.2 (3.3, 6.9) years. Macrolides-resistant variation was positive in 410 cases (91.9%). Fifty-five cases were with RMPP, 391 cases with GMPP. The peak body temperature before the first visit and LDH levels in RMPP patients were higher than that in GMPP patients (39.6 (39.1, 40.0) vs. 39.2 (38.9, 39.7) ℃, 333 (279, 392) vs. 311 (259, 359) U/L, both P<0.05). Logistic regression showed the prediction probability π=exp (-29.7+0.667×Peak body temperature (℃)+0.004×LDH (U/L))/(1+exp (-29.7+0.667×Peak body temperature (℃)+0.004 × LDH (U/L))), the cut-off value to predict RMPP was 0.12, with a consensus of probability forecast of 0.89, sensitivity of 0.89, and specificity of 0.67; and the area under ROC curve was 0.682 (95% CI 0.593-0.771, P<0.01). Conclusion:In MPP patients with fever over 48 to <120 hours, a prediction probability π of RMPP can be calculated based on the peak body temperature and LDH level before the first visit, which can facilitate early identification of RMPP.


Result Analysis
Print
Save
E-mail