1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Characteristics of mitochondrial translational initiation factor 2 gene methylation and its association with the development of hepatocellular carcinoma
Huajie XIE ; Kai CHANG ; Yanyan WANG ; Wanlin NA ; Huan CAI ; Xia LIU ; Zhongyong JIANG ; Zonghai HU ; Yuan LIU
Journal of Clinical Hepatology 2025;41(2):284-291
ObjectiveTo investigate the characteristics of mitochondrial translational initiation factor 2 (MTIF2) gene methylation and its association with the development and progression of hepatocellular carcinoma (HCC). MethodsMethSurv and EWAS Data Hub were used to perform the standardized analysis and the cluster analysis of MTIF2 methylation samples, including survival curve analysis, methylation signature analysis, the association of tumor signaling pathways, and a comparative analysis based on pan-cancer database. The independent-samples t test was used for comparison between two groups; a one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between two groups. The Cox proportional hazards model was used to perform the univariate and multivariate survival analyses of methylation level at the CpG site. The Kaplan-Meier method was used to investigate the survival differences between the patients with low methylation level and those with high methylation level, and the Log-likelihood ratio method was used for survival difference analysis. ResultsGlobal clustering of MTIF2 methylation showed that there was no significant difference in MTIF2 gene methylation level between different races, ethnicities, BMI levels, and ages. The Kaplan-Meier survival curve analysis showed that the patients with N-Shore hypermethylation of the MTIF2 gene had a significantly better prognosis than those with hypomethylation (hazard ratio [HR]=0.492, P<0.001), while there was no significant difference in survival rate between the patients with different CpG island and S-Shore methylation levels (P>0.05). The methylation profile of the MTIF2 gene based on different ages, sexes, BMI levels, races, ethnicities, and clinical stages showed that the N-Shore and CpG island methylation levels of the MTIF2 gene decreased with the increase in age, and the Caucasian population had significantly lower N-Shore methylation levels of the MTIF2 gene than the Asian population (P<0.05); the patients with clinical stage Ⅳ had significantly lower N-Shore and CpG island methylation levels of the MTIF2 gene than those with stage Ⅰ/Ⅱ (P<0.05). Clinical validation showed that the patients with stage Ⅲ/Ⅳ HCC had a significantly lower methylation level of the MTIF2 gene than those with stage Ⅰ/Ⅱ HCC and the normal population (P<0.05). ConclusionN-Shore hypomethylation of the MTIF2 gene is a risk factor for the development and progression of HCC.
3.A survival prediction model for kidney graft based on the kidney donor profile index, time-zero biopsy and donor’s age
Chengxi JIANG ; Shunliang YANG ; Xia GAO ; Liqian WU ; Jiashu LIU ; Dong WANG
Organ Transplantation 2025;16(1):122-130
Objective To construct a predictive model for the survival of transplant kidneys after kidney transplantation. Methods The clinical data of 366 kidney transplant recipients and donors were retrospectively analyzed, and the recipients were divided into low-risk group (n=101), medium-risk group (n=189), and high-risk group (n=76) based on the kidney donor profile index (KDPI). Each group was further divided into Remuzzi score ≤3 group and Remuzzi score >3 group based on time-zero biopsy Remuzzi scores. Kaplan-Meier method was used to analyze the survival of transplant kidneys. Univariate and multivariate Cox regression analyses were performed to identify risk factors affecting long-term survival after kidney transplantation. A predictive model for transplant kidney survival was established and a nomogram was drawn. The predictive performance of the model was evaluated using the receiver operating characteristic (ROC) curve and the area under the curve (AUC). Results The median KDPI was 65%, and the median Remuzzi score was 3. The 5-year survival rate of transplant kidneys was 83.5%. Kaplan-Meier survival curves showed that in the KDPI medium-risk and KDPI high-risk groups, the subgroup with lower Remuzzi score had a higher survival rates of transplant kidneys than the subgroup with higher Remuzzi score. Univariate and multivariate Cox regression analyses showed that KDPI, Remuzzi score, and donor’s age were independent risk factors for transplant kidney loss (all P<0.05). The ROC curve showed that the AUC of the nomogram prediction model established based on independent risk factors for the 1, 3 and 5-year survival rates of transplant kidneys were 0.91, 0.93 and 0.94 for the training set, and 0.89, 0.85 and 0.88 for the validation set. Calibration curves shows good consistency between the training and validation sets of the model. Conclusions The nomogram predictive model based on KDPI, time-zero biopsy Remuzzi score and donor’s age has good predictive value for transplant kidney survival.
4.Evaluation of Effect of Tongnaoyin on Blood-brain Barrier Injury in Acute Ischemic Stroke Patients Based on Dynamic Contrast-enhanced Magnetic Resonance Imaging
Yangjingyi XIA ; Shanshan LI ; Li LI ; Xiaogang TANG ; Xintong WANG ; Qing ZHU ; Hui JIANG ; Cuiping YUAN ; Yongkang LIU ; Zhaoyao CHEN ; Wenlei LI ; Yuan ZHU ; Minghua WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):140-146
ObjectiveTo evaluate the effects of Tongnaoyin on the blood-brain barrier status and neurological impairment in acute ischemic stroke (AIS) patients with the syndrome of phlegm-stasis blocking collaterals by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). MethodsA total of 63 patients diagnosed with AIS in the Jiangsu Province Hospital of Chinese Medicine from October 2022 to December 2023 were enrolled in this study. According to random number table method,the patients were assigned into a control group (32 cases) and an observation group (31 cases). The control group received conventional Western medical treatment,and the observation group took 200 mL Tongnaoyin after meals,twice a day from day 2 of admission on the basis of the treatment in the control group. After 7 days of treatment,the patients were examined by DCE-MRI. The baseline data for two groups of patients before treatment were compared. The National Institute of Health Stroke Scale (NIHSS) score and modified Rankin Scale (mRS) score were recorded before treatment and after 90 days of treatment for both groups. The rKtrans,rKep,and rVe values were obtained from the region of interest (ROI) of the infarct zone/mirror area and compared between the two groups. ResultsThere was no significant difference in the NIHSS or mRS score between the two groups before treatment. After 90 days of treatment,the NIHSS and mRS scores declined in both groups,and the observation group had lower scores than the control group (P<0.05). After treatment,the rKtrans and rVe in the observation group were lower than those in the control group (P<0.01). ConclusionCompared with conventional Western medical treatment alone,conventional Western medical treatment combined with Tongnaoyin accelerates the repair of the blood-brain barrier in AIS patients,thereby ameliorating neurological impairment after AIS to improve the prognosis.
5.Shaoyaotang Restores Th17/Treg Cell Balance by Regulating Glucose Metabolism Reprogramming in Treatment of Ulcerative Colitis
Yiwen WANG ; Yiling XIA ; Erle LIU ; Shaijin JIANG ; Bo ZOU ; Dongsheng WU ; Youwei XIAO ; Hui CAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):78-85
ObjectiveTo investigate the effect of Shaoyaotang on T helper cell 17/regulatory T lymphocyte(Th17/Treg) cell balance in ulcerative colitis and decipher the intervention mechanism based on glucose metabolism reprogramming. MethodsThe mouse model of ulcerative colitis was established by the dextran sulfate sodium (DSS) method. Forty-eight C57BL/6 mice were randomly allocated into normal, model, Western drug control (mesalazine, 0.39 g·kg-1·d-1), Shaoyaotang (15.54 g·kg-1·d-1), inhibitor (2-deoxy-D-glucose, 2-DG, 100 mg·kg-1·d-1), and inhibitor (2-DG, 100 mg·kg-1·d-1) + Shaoyaotang (15.54 g·kg-1·d-1) groups. Mice were administrated with the corresponding drugs by gavage for 7 days. The general conditions and the colon injury degree were observed 24 h after the last administration. The expression of interleukin (IL)-10 and IL-17 in the colon tissue was detected by immunohistochemical staining. Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were performed to determine the protein and mRNA levels, respectively, of hypoxia-inducing factor-1α (HIF-1α), lactate dehydrogenase (LDHA), and hexokinase 2 (HK2) in the colon tissue. Th17/Treg cell differentiation was detected by flow cytometry. Enzyme-linked immunosorbent assay was employed to measure the levels of lactic acid and glucose in the colon tissue and IL-10, IL-17, and IL-6 in the serum. ResultsCompared with the normal group, the model group showed decreases in body weight and disease activity index (DAI) (P<0.05), elevations in levels of HIF-1α, LDHA, HK2, IL-17, IL-6, Th17 cells, lactic acid, and glucose in the colon tissue (P<0.05), and declines in the levels of of IL-10 and Treg cells (P<0.05). Compared with the model group, the drug administration groups showed increases in body weight and DAI (P<0.05), declines in levels of HIF-1α, LDHA, HK2, IL-17, IL-6, Th17 cells, lactic acid, and glucose in the colon tissue (P<0.05), and rises in levels of IL-10 and Treg cells (P<0.05). Shaoyaotang+2-DG group had the most obvious effect. ConclusionShaoyaotang can relieve diarrhea and bloody stool in mice with ulcerative colitis by restoring the Th17/Treg cell balance via regulation of glucose metabolism reprogramming, thus playing a role in the treatment of ulcerative colitis.
6.Shaoyaotang Regulates Glucose Metabolism Reprogramming to Inhibit Macrophage Polarization Toward M1 Phenotype
Shaijin JIANG ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Yiwen WANG ; Yiling XIA ; Erle LIU ; Qi CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):86-93
ObjectiveTo explore the regulation of Shaoyaotang on glucose metabolism reprogramming of macrophages and the mechanism of this decoction in inhibiting macrophage polarization toward the M1 phenotype. MethodsHuman monocytic leukemia-1 (THP-1) cells were treated with 100 ng·L-1 phorbol myristate acetate for induction of macrophages as the normal control group. The cells treated with 100 ng·L-1 lipopolysaccharide combined with 20 ng·L-1 interferon (IFN)-γ for induction of M1-type macrophages were taken as the M1 model group. M1-type macrophages were treated with the blank serum, Shaoyaotang-containing serum, 0.5 mol·L-1 2-deoxy-D-glucose (2-DG), and Shaoyaotang-containing serum + 2-DG, respectively. After intervention, the expression of CD86 and CD206 was examined by flow cytometry. The levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, and transforming growth factor (TGF)-β were assessed by ELISA. Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of hypoxia-inducible factor-1 alpha (HIF-1α), glucose transporter 1 (GLUT1), hexokinase 2 (HK2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). ResultsCompared with that in the normal control group, the expression of CD86, the marker of M1-type macrophages, increased in the M1 model group and blank serum group (P<0.01), which indicated that the M1 inflammatory model was established successfully. In addition, the M1 model group was observed with up-regulated mRNA and protein levels of proinflammatory cytokines IL-6 and TNF-α and glycolysis-related factors HIF-1α, GLUT1, HK2, GAPDH, and PFKFB3 (P<0.01). Compared with the M1 model group, the Shaoyaotang-containing serum, 2-DG, and combined intervention groups showed decreased expression of CD86 (P<0.01), down-regulated mRNA and protein levels of proinflammatory factors IL-6 and TNF-α and glycolysis-related factors HIF-1α, GLUT1, HK2, GAPDH, and PFKFB3 produced by M1-type macrophages (P<0.01), increased expression of CD206 (marker of M2-type macrophages) (P<0.01), and elevated levels of IL-10 and TGF-β produced by M2-type macrophages (P<0.01). ConclusionShaoyaotang inhibits macrophage differentiation toward pro-inflammatory M1-type macrophages and promotes the differentiation toward anti-inflammatory M2-type macrophages by regulating glucose metabolism reprogramming. The evidence gives insights into new molecular mechanisms and targets for the treatment of ulcerative colitis with Shaoyaotang.
7.Shaoyaotang Restores Th17/Treg Cell Balance by Regulating Glucose Metabolism Reprogramming in Treatment of Ulcerative Colitis
Yiwen WANG ; Yiling XIA ; Erle LIU ; Shaijin JIANG ; Bo ZOU ; Dongsheng WU ; Youwei XIAO ; Hui CAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):78-85
ObjectiveTo investigate the effect of Shaoyaotang on T helper cell 17/regulatory T lymphocyte(Th17/Treg) cell balance in ulcerative colitis and decipher the intervention mechanism based on glucose metabolism reprogramming. MethodsThe mouse model of ulcerative colitis was established by the dextran sulfate sodium (DSS) method. Forty-eight C57BL/6 mice were randomly allocated into normal, model, Western drug control (mesalazine, 0.39 g·kg-1·d-1), Shaoyaotang (15.54 g·kg-1·d-1), inhibitor (2-deoxy-D-glucose, 2-DG, 100 mg·kg-1·d-1), and inhibitor (2-DG, 100 mg·kg-1·d-1) + Shaoyaotang (15.54 g·kg-1·d-1) groups. Mice were administrated with the corresponding drugs by gavage for 7 days. The general conditions and the colon injury degree were observed 24 h after the last administration. The expression of interleukin (IL)-10 and IL-17 in the colon tissue was detected by immunohistochemical staining. Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were performed to determine the protein and mRNA levels, respectively, of hypoxia-inducing factor-1α (HIF-1α), lactate dehydrogenase (LDHA), and hexokinase 2 (HK2) in the colon tissue. Th17/Treg cell differentiation was detected by flow cytometry. Enzyme-linked immunosorbent assay was employed to measure the levels of lactic acid and glucose in the colon tissue and IL-10, IL-17, and IL-6 in the serum. ResultsCompared with the normal group, the model group showed decreases in body weight and disease activity index (DAI) (P<0.05), elevations in levels of HIF-1α, LDHA, HK2, IL-17, IL-6, Th17 cells, lactic acid, and glucose in the colon tissue (P<0.05), and declines in the levels of of IL-10 and Treg cells (P<0.05). Compared with the model group, the drug administration groups showed increases in body weight and DAI (P<0.05), declines in levels of HIF-1α, LDHA, HK2, IL-17, IL-6, Th17 cells, lactic acid, and glucose in the colon tissue (P<0.05), and rises in levels of IL-10 and Treg cells (P<0.05). Shaoyaotang+2-DG group had the most obvious effect. ConclusionShaoyaotang can relieve diarrhea and bloody stool in mice with ulcerative colitis by restoring the Th17/Treg cell balance via regulation of glucose metabolism reprogramming, thus playing a role in the treatment of ulcerative colitis.
8.Shaoyaotang Regulates Glucose Metabolism Reprogramming to Inhibit Macrophage Polarization Toward M1 Phenotype
Shaijin JIANG ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Yiwen WANG ; Yiling XIA ; Erle LIU ; Qi CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):86-93
ObjectiveTo explore the regulation of Shaoyaotang on glucose metabolism reprogramming of macrophages and the mechanism of this decoction in inhibiting macrophage polarization toward the M1 phenotype. MethodsHuman monocytic leukemia-1 (THP-1) cells were treated with 100 ng·L-1 phorbol myristate acetate for induction of macrophages as the normal control group. The cells treated with 100 ng·L-1 lipopolysaccharide combined with 20 ng·L-1 interferon (IFN)-γ for induction of M1-type macrophages were taken as the M1 model group. M1-type macrophages were treated with the blank serum, Shaoyaotang-containing serum, 0.5 mol·L-1 2-deoxy-D-glucose (2-DG), and Shaoyaotang-containing serum + 2-DG, respectively. After intervention, the expression of CD86 and CD206 was examined by flow cytometry. The levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, and transforming growth factor (TGF)-β were assessed by ELISA. Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of hypoxia-inducible factor-1 alpha (HIF-1α), glucose transporter 1 (GLUT1), hexokinase 2 (HK2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). ResultsCompared with that in the normal control group, the expression of CD86, the marker of M1-type macrophages, increased in the M1 model group and blank serum group (P<0.01), which indicated that the M1 inflammatory model was established successfully. In addition, the M1 model group was observed with up-regulated mRNA and protein levels of proinflammatory cytokines IL-6 and TNF-α and glycolysis-related factors HIF-1α, GLUT1, HK2, GAPDH, and PFKFB3 (P<0.01). Compared with the M1 model group, the Shaoyaotang-containing serum, 2-DG, and combined intervention groups showed decreased expression of CD86 (P<0.01), down-regulated mRNA and protein levels of proinflammatory factors IL-6 and TNF-α and glycolysis-related factors HIF-1α, GLUT1, HK2, GAPDH, and PFKFB3 produced by M1-type macrophages (P<0.01), increased expression of CD206 (marker of M2-type macrophages) (P<0.01), and elevated levels of IL-10 and TGF-β produced by M2-type macrophages (P<0.01). ConclusionShaoyaotang inhibits macrophage differentiation toward pro-inflammatory M1-type macrophages and promotes the differentiation toward anti-inflammatory M2-type macrophages by regulating glucose metabolism reprogramming. The evidence gives insights into new molecular mechanisms and targets for the treatment of ulcerative colitis with Shaoyaotang.
9.Alleviation of Ulcerative Colitis by Shaoyaotang via Inhibiting Glycolysis Through SIRT6/HIF-1α Pathway
Yiling XIA ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Erle LIU ; Yiwen WANG ; Shaijin JIANG ; Yiqian YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):10-19
ObjectiveTo investigate the role of silent information regulatory protein (SIRT6)/hypoxia-inducible factor-1α (HIF-1α) pathway in regulating the reprogramming of glucose metabolism in ulcerative colitis (UC) and the mechanism of intervention of Shaoyaotang. MethodsForty-eight c57bL/6 mice were randomly divided into a blank group, a model group, a Mesalazine group (0.42 g·kg-1), a Shaoyaotang group (31.08 g·kg-1), an inhibitor group (OSS-128167, 50 mg·kg-1), and an inhibitor + Shaoyaotang group (50 mg·kg-1 OSS-128167 + 31.08 g·kg-1 Shaoyaotang). A UC model was established by the administration of 2.5% dextran sulfate sodium (DSS) solution for mice in other groups for 7 d, except for the blank group. The mice in each group were treated with saline, Mesalazine, Shaoyaotang, inhibitor, and inhibitor + Shaoyaotang, respectively, for 7 d. The mice were necropsied 24 h after the last administration of the drug. The blood was collected from the orbital region, and colon tissue was taken. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in colon tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to detect serum interleukin (IL)-10, IL-17, and IL-6 levels. A biochemical method was used to detect glucose and lactate dehydrogenase A (LDHA) levels. Immunohistochemistry (IHC) was employed to detect IL-22 and transforming growth factor-β1 (TGF-β1) levels in colon tissue, and Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were used to detect relative protein and mRNA expressions of SIRT6, HIF-1α, and LDHA. ResultsCompared with those of the blank group, disease activity index (DAI) scores of mice in the model group and inhibitor group were significantly increased (P<0.01). The length of colon tissue was significantly shortened, and colon tissue was congested and eroded. The pathohistological scores were significantly increased (P<0.01). The levels of serum inflammatory factors IL-17 and IL-6 were significantly elevated, and the levels of IL-10 were significantly decreased (P<0.01). The protein expressions of IL-22 and TGF-β1 were significantly reduced in colon tissue (P<0.01). The relative protein and mRNA expressions of SIRT6 were significantly decreased (P<0.01), and the relative protein and mRNA expressions of HIF-1α and LDHA and the contents of glucose and lactate were significantly elevated (P<0.01). The level of inflammation in the colon of the mice in the inhibitor group was more severe than that in the model group (P<0.01). Compared with the model group, the Mesalazine group, the Shaoyaotang group, and the inhibitor + Shaoyaotang group showed reduced colonic injury, significant decrease in serum IL-17 and IL-6, significant increase in IL-10 (P<0.01), significant increase in the protein expressions of IL-22 and TGF-β1 in colon tissue (P<0.01), significant increase in the protein expressions of SIRT6 and the relative mRNA expressions (P<0.01), and significant reduction in the protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate (P<0.01). Compared with those in the Shaoyaotang group, the serum IL-17 and IL-6 were significantly increased, and IL-10 was significantly decreased in the inhibitor + Shaoyaotang group (P<0.01). The protein expressions of IL-22 and TGF-β1 in colon tissue were significantly decreased (P<0.01). The expressions of SIRT6 protein and the relative mRNA expressions were significantly decreased (P<0.01). The protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate were significantly elevated (P<0.01). However, the difference between the Shaoyaotang group and the Mesalazine group was not significant. ConclusionShaoyaotang can effectively treat DSS-induced mice with UC through the SIRT6/HIF-1α pathway, and its mechanism of action may be related to the regulation of the SIRT6/HIF-1α pathway and glucose metabolism reprogramming and the inhibition of glycolysis.
10.Alleviation of Ulcerative Colitis by Shaoyaotang via Inhibiting Glycolysis Through SIRT6/HIF-1α Pathway
Yiling XIA ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Erle LIU ; Yiwen WANG ; Shaijin JIANG ; Yiqian YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):10-19
ObjectiveTo investigate the role of silent information regulatory protein (SIRT6)/hypoxia-inducible factor-1α (HIF-1α) pathway in regulating the reprogramming of glucose metabolism in ulcerative colitis (UC) and the mechanism of intervention of Shaoyaotang. MethodsForty-eight c57bL/6 mice were randomly divided into a blank group, a model group, a Mesalazine group (0.42 g·kg-1), a Shaoyaotang group (31.08 g·kg-1), an inhibitor group (OSS-128167, 50 mg·kg-1), and an inhibitor + Shaoyaotang group (50 mg·kg-1 OSS-128167 + 31.08 g·kg-1 Shaoyaotang). A UC model was established by the administration of 2.5% dextran sulfate sodium (DSS) solution for mice in other groups for 7 d, except for the blank group. The mice in each group were treated with saline, Mesalazine, Shaoyaotang, inhibitor, and inhibitor + Shaoyaotang, respectively, for 7 d. The mice were necropsied 24 h after the last administration of the drug. The blood was collected from the orbital region, and colon tissue was taken. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in colon tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to detect serum interleukin (IL)-10, IL-17, and IL-6 levels. A biochemical method was used to detect glucose and lactate dehydrogenase A (LDHA) levels. Immunohistochemistry (IHC) was employed to detect IL-22 and transforming growth factor-β1 (TGF-β1) levels in colon tissue, and Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were used to detect relative protein and mRNA expressions of SIRT6, HIF-1α, and LDHA. ResultsCompared with those of the blank group, disease activity index (DAI) scores of mice in the model group and inhibitor group were significantly increased (P<0.01). The length of colon tissue was significantly shortened, and colon tissue was congested and eroded. The pathohistological scores were significantly increased (P<0.01). The levels of serum inflammatory factors IL-17 and IL-6 were significantly elevated, and the levels of IL-10 were significantly decreased (P<0.01). The protein expressions of IL-22 and TGF-β1 were significantly reduced in colon tissue (P<0.01). The relative protein and mRNA expressions of SIRT6 were significantly decreased (P<0.01), and the relative protein and mRNA expressions of HIF-1α and LDHA and the contents of glucose and lactate were significantly elevated (P<0.01). The level of inflammation in the colon of the mice in the inhibitor group was more severe than that in the model group (P<0.01). Compared with the model group, the Mesalazine group, the Shaoyaotang group, and the inhibitor + Shaoyaotang group showed reduced colonic injury, significant decrease in serum IL-17 and IL-6, significant increase in IL-10 (P<0.01), significant increase in the protein expressions of IL-22 and TGF-β1 in colon tissue (P<0.01), significant increase in the protein expressions of SIRT6 and the relative mRNA expressions (P<0.01), and significant reduction in the protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate (P<0.01). Compared with those in the Shaoyaotang group, the serum IL-17 and IL-6 were significantly increased, and IL-10 was significantly decreased in the inhibitor + Shaoyaotang group (P<0.01). The protein expressions of IL-22 and TGF-β1 in colon tissue were significantly decreased (P<0.01). The expressions of SIRT6 protein and the relative mRNA expressions were significantly decreased (P<0.01). The protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate were significantly elevated (P<0.01). However, the difference between the Shaoyaotang group and the Mesalazine group was not significant. ConclusionShaoyaotang can effectively treat DSS-induced mice with UC through the SIRT6/HIF-1α pathway, and its mechanism of action may be related to the regulation of the SIRT6/HIF-1α pathway and glucose metabolism reprogramming and the inhibition of glycolysis.

Result Analysis
Print
Save
E-mail