1.Effect of Maxing Loushi Decoction on Inflammatory Factors, Immune Function, and PD-1/PD-L1 Signaling Pathway in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease with Phlegm Turbidity Obstructing Lung Syndrome
Yuexin SHI ; Zhi YAO ; Jun YAN ; Caijun WU ; Li LI ; Yuanzhen JIAN ; Guangming ZHENG ; Yanchen CAO ; Haifeng GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):143-150
ObjectiveTo evaluate the clinical efficacy of Maxing Loushi decoction in the treatment of acute exacerbation of chronic obstructive pulmonary disease (AECOPD) with phlegm turbidity obstructing lung syndrome, and to investigate its effects on inflammatory factors, immune function, and the programmed death-1(PD-1)/programmed death-ligand 1 (PD-L1) signaling pathway. MethodsA randomized controlled study was conducted, enrolling 90 hospitalized patients with AECOPD and phlegm turbidity obstructing lung syndrome in the Respiratory and Emergency Departments of Dongzhimen Hospital, Beijing University of Chinese Medicine, from April 2024 to December 2024. Patients were randomly assigned to a control group and an observation group using a random number table, with 45 patients in each group. The control group received conventional Western medical treatment, while the observation group received additional Maxing Loushi decoction for 14 days. Clinical efficacy, COPD Assessment Test (CAT) score, modified Medical Research Council Dyspnea Scale (mMRC), 6-minute walk test (6MWT), serum inflammatory factors, T lymphocyte subsets, and serum PD-1/PD-L1 levels were compared between the two groups before and after treatment. ResultsThe total clinical effective rate was 78.57% (33/42) in the control group and 95.35% (41/43) in the observation group, with the observation group showing significantly higher efficacy than that of the control group. The difference was statistically significant (χ2 = 5.136, P<0.05). After treatment, both groups showed significant reductions in CAT and mMRC scores (P<0.05, P<0.01) and significant increases in 6MWT compared to baseline (P<0.01). The observation group demonstrated significantly greater improvements than the control group in this regard. Levels of inflammatory markers including C-reactive protein (CRP), procalcitonin (PCT), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1(MCP-1), and macrophage inflammatory protein-1α (MIP-1α) were significantly reduced in both groups (P<0.05, P<0.01), with greater reductions in the observation group (P<0.05, P<0.01). CD8+ levels were significantly reduced (P<0.01), while CD3+, CD4+, and CD4+/CD8+ levels were significantly increased in both groups after treatment (P<0.05, P<0.01), with more significant improvements observed in the observation group (P<0.05, P<0.01). Serum PD-1 levels were reduced (P<0.05, P<0.01), and PD-L1 levels were increased significantly in both groups after treatment (P<0.05, P<0.01), with more pronounced changes in the observation group (P<0.05). ConclusionMaxing Loushi decoction demonstrates definite therapeutic efficacy as an adjunctive treatment for patients with AECOPD and phlegm turbidity obstructing lung syndrome. It contributes to reducing serum inflammatory factors, improving immune function, and regulating the PD-1/PD-L1 signaling pathway.
2.Effect of Maxing Loushi Decoction on Inflammatory Factors, Immune Function, and PD-1/PD-L1 Signaling Pathway in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease with Phlegm Turbidity Obstructing Lung Syndrome
Yuexin SHI ; Zhi YAO ; Jun YAN ; Caijun WU ; Li LI ; Yuanzhen JIAN ; Guangming ZHENG ; Yanchen CAO ; Haifeng GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):143-150
ObjectiveTo evaluate the clinical efficacy of Maxing Loushi decoction in the treatment of acute exacerbation of chronic obstructive pulmonary disease (AECOPD) with phlegm turbidity obstructing lung syndrome, and to investigate its effects on inflammatory factors, immune function, and the programmed death-1(PD-1)/programmed death-ligand 1 (PD-L1) signaling pathway. MethodsA randomized controlled study was conducted, enrolling 90 hospitalized patients with AECOPD and phlegm turbidity obstructing lung syndrome in the Respiratory and Emergency Departments of Dongzhimen Hospital, Beijing University of Chinese Medicine, from April 2024 to December 2024. Patients were randomly assigned to a control group and an observation group using a random number table, with 45 patients in each group. The control group received conventional Western medical treatment, while the observation group received additional Maxing Loushi decoction for 14 days. Clinical efficacy, COPD Assessment Test (CAT) score, modified Medical Research Council Dyspnea Scale (mMRC), 6-minute walk test (6MWT), serum inflammatory factors, T lymphocyte subsets, and serum PD-1/PD-L1 levels were compared between the two groups before and after treatment. ResultsThe total clinical effective rate was 78.57% (33/42) in the control group and 95.35% (41/43) in the observation group, with the observation group showing significantly higher efficacy than that of the control group. The difference was statistically significant (χ2 = 5.136, P<0.05). After treatment, both groups showed significant reductions in CAT and mMRC scores (P<0.05, P<0.01) and significant increases in 6MWT compared to baseline (P<0.01). The observation group demonstrated significantly greater improvements than the control group in this regard. Levels of inflammatory markers including C-reactive protein (CRP), procalcitonin (PCT), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1(MCP-1), and macrophage inflammatory protein-1α (MIP-1α) were significantly reduced in both groups (P<0.05, P<0.01), with greater reductions in the observation group (P<0.05, P<0.01). CD8+ levels were significantly reduced (P<0.01), while CD3+, CD4+, and CD4+/CD8+ levels were significantly increased in both groups after treatment (P<0.05, P<0.01), with more significant improvements observed in the observation group (P<0.05, P<0.01). Serum PD-1 levels were reduced (P<0.05, P<0.01), and PD-L1 levels were increased significantly in both groups after treatment (P<0.05, P<0.01), with more pronounced changes in the observation group (P<0.05). ConclusionMaxing Loushi decoction demonstrates definite therapeutic efficacy as an adjunctive treatment for patients with AECOPD and phlegm turbidity obstructing lung syndrome. It contributes to reducing serum inflammatory factors, improving immune function, and regulating the PD-1/PD-L1 signaling pathway.
3.Expert consensus on evaluation index system construction for new traditional Chinese medicine(TCM) from TCM clinical practice in medical institutions.
Li LIU ; Lei ZHANG ; Wei-An YUAN ; Zhong-Qi YANG ; Jun-Hua ZHANG ; Bao-He WANG ; Si-Yuan HU ; Zu-Guang YE ; Ling HAN ; Yue-Hua ZHOU ; Zi-Feng YANG ; Rui GAO ; Ming YANG ; Ting WANG ; Jie-Lai XIA ; Shi-Shan YU ; Xiao-Hui FAN ; Hua HUA ; Jia HE ; Yin LU ; Zhong WANG ; Jin-Hui DOU ; Geng LI ; Yu DONG ; Hao YU ; Li-Ping QU ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2025;50(12):3474-3482
Medical institutions, with their clinical practice foundation and abundant human use experience data, have become important carriers for the inheritance and innovation of traditional Chinese medicine(TCM) and the "cradles" of the preparation of new TCM. To effectively promote the transformation of new TCM originating from the TCM clinical practice in medical institutions and establish an effective evaluation index system for the transformation of new TCM conforming to the characteristics of TCM, consensus experts adopted the literature research, questionnaire survey, Delphi method, etc. By focusing on the policy and technical evaluation of new TCM originating from the TCM clinical practice in medical institutions, a comprehensive evaluation from the dimensions of drug safety, efficacy, feasibility, and characteristic advantages was conducted, thus forming a comprehensive evaluation system with four primary indicators and 37 secondary indicators. The expert consensus reached aims to encourage medical institutions at all levels to continuously improve the high-quality research and development and transformation of new TCM originating from the TCM clinical practice in medical institutions and targeted at clinical needs, so as to provide a decision-making basis for the preparation, selection, cultivation, and transformation of new TCM for medical institutions, improve the development efficiency of new TCM, and precisely respond to the public medication needs.
Medicine, Chinese Traditional/standards*
;
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Surveys and Questionnaires
4.Comparison between sinking and floating fresh Rehmanniae Radix samples by UHPLC-Q-Orbitrap HRMS, fingerprinting, and chemometrics.
Shi-Long LIU ; Hong-Wei ZHANG ; Zhen-Ling ZHANG ; Han-Ting JIA ; Zhi-Jun GUO ; Rui-Sheng WANG ; Hong-Wei ZHANG ; Shuo WANG ; Yi-Jian ZHONG
China Journal of Chinese Materia Medica 2025;50(14):3918-3929
This study aims to explore the scientific connotation of sinking Rehmanniae Radix has the best quality and compare the quality between floating and sinking fresh Rehmanniae Radix samples. Ultra-performance liquid chromatography tandem quadrupole electrostatic field Orbitrap high-resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) was employed to detect the chemical components in floating and sinking fresh Rehmanniae Radix samples. The fingerprint of fresh Rehmanniae Radix was established by high performance liquid chromatography(HPLC), and four index components were determined simultaneously. The cluster analysis, principal component analysis(PCA), and orthogonal partial least squares-discriminant analysis(OPLS-DA) were conducted to compare the quality of floating and sinking fresh Rehmanniae Radix samples. An evaporative light-scattering detector was used to compare the content of five sugars. The extract yield and drying rate were determined, and the quality connotation of sinking Rehmanniae Radix has the best quality was explained by multiple indicators. A total of 41 components were preliminarily identified from fresh Rehmanniae Radix by UHPLC-Q-Orbitrap HRMS, including 7 iridoid glycosides, 9 phenylethanol glycosides, 6 amino acids, 4 sugars, 3 phenolic acids, 5 nucleosides, 3 organic acids, 1 ionone, 1 furan, 1 coumarin, and 1 phenylpropanoid. The results showed that the main chemical components were consistent between floating and sinking fresh Rehmanniae Radix. Nine common peaks were identified in the fingerprints of 15 batches of floating and sinking fresh Rehmanniae Radix samples, and the similarity of fingerprints was greater than 0.9. The cluster analysis, PCA, and OPLS-DA classified floating and sinking fresh Rehmanniae Radix sasmples into two categories, indicating differences in the quality between them. The total content of catalpol, rehmannioside D, ajugol, and verbascoside in sinking fresh Rehmanniae Radix samples was higher than that in floating samples of the same batch and specification, and the main differential component was catalpol. The total content of fructose, glucose, sucrose, raffinose, and stachyose in sinking fresh Rehmanniae Radix samples was higher than that in floating samples of the same batch and specification, and the main differential component was stachyose. The extract yield and drying rate of the sinking samples were higher than those of floating samples. This study preliminarily showed that floating and sinking fresh Rehmanniae Radix samples had the same components but great differences in the content of medicinal substance basis. The total content of four glycosides and five sugars, extract yield, and drying rate of sinking fresh Rehmanniae Radix samples is higher than that of floating samples of the same batch and specification. These findings, to a certain extent, explains the scientificity of sinking Rehmanniae Radix has the best quality recorded in ancient books and provide a reference for the quality control and clinical application of fresh Rehmanniae Radix.
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Rehmannia/chemistry*
;
Chemometrics
;
Mass Spectrometry/methods*
;
Quality Control
;
Principal Component Analysis
;
Plant Extracts
5.Mechanism of Chaijin Jieyu Anshen Formula in regulating synaptic damage in nucleus accumbens neurons of rats with insomnia complicated with depression through TREM2/C1q axis.
Ying-Juan TANG ; Jia-Cheng DAI ; Song YANG ; Xiao-Shi YU ; Yao ZHANG ; Hai-Long SU ; Zhi-Yuan LIU ; Zi-Xuan XIANG ; Jun-Cheng LIU ; Hai-Xia HE ; Jian LIU ; Yuan-Shan HAN ; Yu-Hong WANG ; Man-Shu ZOU
China Journal of Chinese Materia Medica 2025;50(16):4538-4545
This study aims to investigate the effect of Chaijin Jieyu Anshen Formula on the neuroinflammation of rats with insomnia complicated with depression through the regulation of triggering receptor expressed on myeloid cells 2(TREM2)/complement protein C1q signaling pathway. Rats were randomly divided into a normal group, a model group, a positive drug group, as well as a high, medium, and low-dose groups of Chaijin Jieyu Anshen Formula, with 10 rats in each group. Except for the normal group, the other groups were injected with p-chlorophenylalanine and exposed to chronic unpredictable mild stress to establish the rat model of insomnia complicated with depression. The sucrose preference experiment, open field experiment, and water maze test were performed to evaluate the depression in rats. Enzyme-linked immunosorbent assay was employed to detect serum 5-hydroxytryptamine(5-HT), dopamine(DA), and norepinephrine(NE) levels. Hematoxylin and eosin staining and Nissl staining were used to observe the damage in nucleus accumbens neurons. Western blot and immunofluorescence were performed to detect TREM2, C1q, postsynaptic density 95(PSD-95), and synaptophysin 1(SYN1) expressions in rat nucleus accumbens, respectively. Golgi-Cox staining was utilized to observe the synaptic spine density of nucleus accumbens neurons. The results show that, compared with the model group, Chaijin Jieyu Anshen Formula can significantly increase the sucrose preference as well as the distance and number of voluntary activities, shorten the immobility time in forced swimming test and the successful incubation period of positioning navigation, and prolong the stay time of space exploration in the target quadrant test. The serum 5-HT, DA, and NE contents in the model group are significantly lower than those in the normal group, with the above contents significantly increased after the intervention of Chaijin Jieyu Anshen Formula. In addition, Chaijin Jieyu Anshen Formula can alleviate pathological damages such as swelling and loose arrangement of tissue cells in the nucleus accumbens, while increasing the Nissl body numbers. Chaijin Jieyu Anshen Formula can improve synaptic damage in the nucleus accumbens and increase the synaptic spine density. Compared to the normal group, the expression of C1q protein was significantly higher in the model group, while the expression of TREM2 protein was significantly lower. Compared to the model group, the intervention with Chaijin Jieyu Anshen Formula significantly downregulated the expression of C1q protein and significantly upregulated the expression of TREM2. Compared with the model group, the PSD-95 and SYN1 fluorescence intensity is significantly increased in the groups receiving different doses of Chaijin Jieyu Anshen Formula. In summary, Chaijin Jieyu Anshen Formula can reduce the C1q protein expression, relieve the TREM2 inhibition, and promote the synapse-related proteins PSD-95 and SNY1 expression. Chaijin Jieyu Anshen Formula improves synaptic injury of the nucleus accumbens neurons, thereby treating insomnia complicated with depression.
Animals
;
Male
;
Rats
;
Nucleus Accumbens/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Depression/complications*
;
Membrane Glycoproteins/genetics*
;
Rats, Sprague-Dawley
;
Sleep Initiation and Maintenance Disorders/complications*
;
Neurons/metabolism*
;
Receptors, Immunologic/genetics*
;
Signal Transduction/drug effects*
;
Synapses/metabolism*
6.Comparative analysis of clinical characteristics of term and preterm neonates with necrotizing enterocolitis undergoing surgery.
Jun-Li LI ; Huan WEI ; Qi TAN ; Jian CAO ; Ting ZHU ; Yang ZHANG ; Yuan SHI ; Zheng-Li WANG
Chinese Journal of Contemporary Pediatrics 2025;27(5):595-600
OBJECTIVES:
To study the differences in clinical characteristics of term and preterm neonates with necrotizing enterocolitis (NEC) undergoing surgical treatment.
METHODS:
A retrospective analysis was conducted on the clinical data of 142 NEC neonates who underwent surgery at the Children's Hospital of Chongqing Medical University from June 2017 to August 2023. The neonates were categorized into a preterm group (gestational age <37 weeks; 95 cases) and a term group (gestational age 37-42 weeks; 47 cases) to compare clinical characteristics.
RESULTS:
The preterm group had a higher postnatal age at both diagnosis and surgery compared to the term group (P<0.05). The preterm group also had a higher incidence of preoperative bloody stools, lower preoperative platelet counts, and higher rates of preoperative respiratory distress, apnea, reduced/absent bowel sounds, and mechanical ventilation compared to the term group (P<0.05). Postoperatively, the preterm group had higher rates of purulent meningitis, sepsis, and coagulation dysfunction, lower postoperative platelet counts, and lower intraoperative minimum body temperature than the term group (P<0.05).
CONCLUSIONS
There are significant differences in the clinical characteristics of preterm and term neonates with NEC undergoing surgery, suggesting the need for tailored perioperative management strategies based on these characteristics.
Humans
;
Enterocolitis, Necrotizing/surgery*
;
Infant, Newborn
;
Retrospective Studies
;
Male
;
Female
;
Infant, Premature
;
Gestational Age
7.Mechanism of Reactive Oxygen/Nitrogen Species in Liver Ischemia-Reperfusion Injury and Preventive Effect of Chinese Medicine.
Lei GAO ; Yun-Jia LI ; Jia-Min ZHAO ; Yu-Xin LIAO ; Meng-Chen QIN ; Jun-Jie LI ; Hao SHI ; Nai-Kei WONG ; Zhi-Ping LYU ; Jian-Gang SHEN
Chinese journal of integrative medicine 2025;31(5):462-473
Liver ischemia-reperfusion injury (LIRI) is a pathological process involving multiple injury factors and cell types, with different stages. Currently, protective drugs targeting a single condition are limited in efficacy, and interventions on immune cells will also be accompanied by a series of side effects. In the current bottleneck research stage, the multi-target and obvious clinical efficacy of Chinese medicine (CM) is expected to become a breakthrough point in the research and development of new drugs. In this review, we summarize the roles of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in various stages of hepatic ischemia-reperfusion and on various types of cells. Combined with the current research progress in reducing ROS/RNS with CM, new therapies and mechanisms for the treatment of hepatic ischemia-reperfusion are discussed.
Reperfusion Injury/drug therapy*
;
Reactive Oxygen Species/metabolism*
;
Reactive Nitrogen Species/metabolism*
;
Humans
;
Liver/drug effects*
;
Animals
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/pharmacology*
8.USP20 as a super-enhancer-regulated gene drives T-ALL progression via HIF1A deubiquitination.
Ling XU ; Zimu ZHANG ; Juanjuan YU ; Tongting JI ; Jia CHENG ; Xiaodong FEI ; Xinran CHU ; Yanfang TAO ; Yan XU ; Pengju YANG ; Wenyuan LIU ; Gen LI ; Yongping ZHANG ; Yan LI ; Fenli ZHANG ; Ying YANG ; Bi ZHOU ; Yumeng WU ; Zhongling WEI ; Yanling CHEN ; Jianwei WANG ; Di WU ; Xiaolu LI ; Yang YANG ; Guanghui QIAN ; Hongli YIN ; Shuiyan WU ; Shuqi ZHANG ; Dan LIU ; Jun-Jie FAN ; Lei SHI ; Xiaodong WANG ; Shaoyan HU ; Jun LU ; Jian PAN
Acta Pharmaceutica Sinica B 2025;15(9):4751-4771
T-cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive hematologic malignancy with a poor prognosis, despite advancements in treatment. Many patients struggle with relapse or refractory disease. Investigating the role of the super-enhancer (SE) regulated gene ubiquitin-specific protease 20 (USP20) in T-ALL could enhance targeted therapies and improve clinical outcomes. Analysis of histone H3 lysine 27 acetylation (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) data from six T-ALL cell lines and seven pediatric samples identified USP20 as an SE-regulated driver gene. Utilizing the Cancer Cell Line Encyclopedia (CCLE) and BloodSpot databases, it was found that USP20 is specifically highly expressed in T-ALL. Knocking down USP20 with short hairpin RNA (shRNA) increased apoptosis and inhibited proliferation in T-ALL cells. In vivo studies showed that USP20 knockdown reduced tumor growth and improved survival. The USP20 inhibitor GSK2643943A demonstrated similar anti-tumor effects. Mass spectrometry, RNA-Seq, and immunoprecipitation revealed that USP20 interacted with hypoxia-inducible factor 1 subunit alpha (HIF1A) and stabilized it by deubiquitination. Cleavage under targets and tagmentation (CUT&Tag) results indicated that USP20 co-localized with HIF1A, jointly modulating target genes in T-ALL. This study identifies USP20 as a therapeutic target in T-ALL and suggests GSK2643943A as a potential treatment strategy.
9.Cation Channel TMEM63A Autonomously Facilitates Oligodendrocyte Differentiation at an Early Stage.
Yue-Ying WANG ; Dan WU ; Yongkun ZHAN ; Fei LI ; Yan-Yu ZANG ; Xiao-Yu TENG ; Linlin ZHANG ; Gui-Fang DUAN ; He WANG ; Rong XU ; Guiquan CHEN ; Yun XU ; Jian-Jun YANG ; Yongguo YU ; Yun Stone SHI
Neuroscience Bulletin 2025;41(4):615-632
Accurate timing of myelination is crucial for the proper functioning of the central nervous system. Here, we identified a de novo heterozygous mutation in TMEM63A (c.1894G>A; p. Ala632Thr) in a 7-year-old boy exhibiting hypomyelination. A Ca2+ influx assay suggested that this is a loss-of-function mutation. To explore how TMEM63A deficiency causes hypomyelination, we generated Tmem63a knockout mice. Genetic deletion of TMEM63A resulted in hypomyelination at postnatal day 14 (P14) arising from impaired differentiation of oligodendrocyte precursor cells (OPCs). Notably, the myelin dysplasia was transient, returning to normal levels by P28. Primary cultures of Tmem63a-/- OPCs presented delayed differentiation. Lentivirus-based expression of TMEM63A but not TMEM63A_A632T rescued the differentiation of Tmem63a-/- OPCs in vitro and myelination in Tmem63a-/- mice. These data thus support the conclusion that the mutation in TMEM63A is the pathogenesis of the hypomyelination in the patient. Our study further demonstrated that TMEM63A-mediated Ca2+ influx plays critical roles in the early development of myelin and oligodendrocyte differentiation.
Animals
;
Cell Differentiation/physiology*
;
Oligodendroglia/metabolism*
;
Mice, Knockout
;
Mice
;
Male
;
Myelin Sheath/metabolism*
;
Humans
;
Child
;
Cells, Cultured
;
Oligodendrocyte Precursor Cells/metabolism*
10.Machine learning-assisted microfluidic approach for broad-spectrum liposome size control.
Yujie JIA ; Xiao LIANG ; Li ZHANG ; Jun ZHANG ; Hajra ZAFAR ; Shan HUANG ; Yi SHI ; Jian CHEN ; Qi SHEN
Journal of Pharmaceutical Analysis 2025;15(6):101221-101221
Liposomes serve as critical carriers for drugs and vaccines, with their biological effects influenced by their size. The microfluidic method, renowned for its precise control, reproducibility, and scalability, has been widely employed for liposome preparation. Although some studies have explored factors affecting liposomal size in microfluidic processes, most focus on small-sized liposomes, predominantly through experimental data analysis. However, the production of larger liposomes, which are equally significant, remains underexplored. In this work, we thoroughly investigate multiple variables influencing liposome size during microfluidic preparation and develop a machine learning (ML) model capable of accurately predicting liposomal size. Experimental validation was conducted using a staggered herringbone micromixer (SHM) chip. Our findings reveal that most investigated variables significantly influence liposomal size, often interrelating in complex ways. We evaluated the predictive performance of several widely-used ML algorithms, including ensemble methods, through cross-validation (CV) for both liposome size and polydispersity index (PDI). A standalone dataset was experimentally validated to assess the accuracy of the ML predictions, with results indicating that ensemble algorithms provided the most reliable predictions. Specifically, gradient boosting was selected for size prediction, while random forest was employed for PDI prediction. We successfully produced uniform large (600 nm) and small (100 nm) liposomes using the optimised experimental conditions derived from the ML models. In conclusion, this study presents a robust methodology that enables precise control over liposome size distribution, offering valuable insights for medicinal research applications.

Result Analysis
Print
Save
E-mail