1.Scientific connotation of "blood stasis toxin" in hypoxic microenvironment: its "soil" function in tumor progression and micro-level treatment approaches.
Wei FAN ; Yuan-Lin LYU ; Xiao-Chen NI ; Kai-Yuan ZHANG ; Chu-Hang WANG ; Jia-Ning GUO ; Guang-Ji ZHANG ; Jian-Bo HUANG ; Tao JIANG
China Journal of Chinese Materia Medica 2025;50(12):3483-3488
The tumor microenvironment is a crucial factor in tumor occurrence and progression. The hypoxic microenvironment is widely present in tumor tissue and is a key endogenous factor accelerating tumor deterioration. The "blood stasis toxin" theory, as an emerging perspective in tumor research, is regarded as the unique "soil" in tumor progression from the perspective of traditional Chinese medicine(TCM) due to its dynamic evolution mechanism, which closely resembles the formation of the hypoxic microenvironment. Scientifically integrating TCM theories with the biological characteristics of tumors and exploring precise syndrome differentiation and treatment strategies are key to achieving comprehensive tumor prevention and control. This article focused on the hypoxic microenvironment of the tumor, elucidating its formation mechanisms and evolutionary processes and carefully analyzing the internal relationship between the "blood stasis toxin" theory and the hypoxic microenvironment. Additionally, it explored the interaction among blood stasis, toxic pathogens, and hypoxic environment and proposed micro-level prevention and treatment strategies targeting the hypoxic microenvironment based on the "blood stasis toxin" theory, aiming to provide TCM-based theoretical support and therapeutic approaches for precise regulation of the hypoxic microenvironment.
Humans
;
Tumor Microenvironment/drug effects*
;
Neoplasms/therapy*
;
Animals
;
Medicine, Chinese Traditional
;
Disease Progression
;
Drugs, Chinese Herbal
2.USP20 as a super-enhancer-regulated gene drives T-ALL progression via HIF1A deubiquitination.
Ling XU ; Zimu ZHANG ; Juanjuan YU ; Tongting JI ; Jia CHENG ; Xiaodong FEI ; Xinran CHU ; Yanfang TAO ; Yan XU ; Pengju YANG ; Wenyuan LIU ; Gen LI ; Yongping ZHANG ; Yan LI ; Fenli ZHANG ; Ying YANG ; Bi ZHOU ; Yumeng WU ; Zhongling WEI ; Yanling CHEN ; Jianwei WANG ; Di WU ; Xiaolu LI ; Yang YANG ; Guanghui QIAN ; Hongli YIN ; Shuiyan WU ; Shuqi ZHANG ; Dan LIU ; Jun-Jie FAN ; Lei SHI ; Xiaodong WANG ; Shaoyan HU ; Jun LU ; Jian PAN
Acta Pharmaceutica Sinica B 2025;15(9):4751-4771
T-cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive hematologic malignancy with a poor prognosis, despite advancements in treatment. Many patients struggle with relapse or refractory disease. Investigating the role of the super-enhancer (SE) regulated gene ubiquitin-specific protease 20 (USP20) in T-ALL could enhance targeted therapies and improve clinical outcomes. Analysis of histone H3 lysine 27 acetylation (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) data from six T-ALL cell lines and seven pediatric samples identified USP20 as an SE-regulated driver gene. Utilizing the Cancer Cell Line Encyclopedia (CCLE) and BloodSpot databases, it was found that USP20 is specifically highly expressed in T-ALL. Knocking down USP20 with short hairpin RNA (shRNA) increased apoptosis and inhibited proliferation in T-ALL cells. In vivo studies showed that USP20 knockdown reduced tumor growth and improved survival. The USP20 inhibitor GSK2643943A demonstrated similar anti-tumor effects. Mass spectrometry, RNA-Seq, and immunoprecipitation revealed that USP20 interacted with hypoxia-inducible factor 1 subunit alpha (HIF1A) and stabilized it by deubiquitination. Cleavage under targets and tagmentation (CUT&Tag) results indicated that USP20 co-localized with HIF1A, jointly modulating target genes in T-ALL. This study identifies USP20 as a therapeutic target in T-ALL and suggests GSK2643943A as a potential treatment strategy.
3.Expert consensus on intentional tooth replantation.
Zhengmei LIN ; Dingming HUANG ; Shuheng HUANG ; Zhi CHEN ; Qing YU ; Benxiang HOU ; Lihong QIU ; Wenxia CHEN ; Jiyao LI ; Xiaoyan WANG ; Zhengwei HUANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Shuang PAN ; Deqin YANG ; Weidong NIU ; Qi ZHANG ; Shuli DENG ; Jingzhi MA ; Xiuping MENG ; Jian YANG ; Jiayuan WU ; Lan ZHANG ; Jin ZHANG ; Xiaoli XIE ; Jinpu CHU ; Kehua QUE ; Xuejun GE ; Xiaojing HUANG ; Zhe MA ; Lin YUE ; Xuedong ZHOU ; Junqi LING
International Journal of Oral Science 2025;17(1):16-16
Intentional tooth replantation (ITR) is an advanced treatment modality and the procedure of last resort for preserving teeth with inaccessible endodontic or resorptive lesions. ITR is defined as the deliberate extraction of a tooth; evaluation of the root surface, endodontic manipulation, and repair; and placement of the tooth back into its original socket. Case reports, case series, cohort studies, and randomized controlled trials have demonstrated the efficacy of ITR in the retention of natural teeth that are untreatable or difficult to manage with root canal treatment or endodontic microsurgery. However, variations in clinical protocols for ITR exist due to the empirical nature of the original protocols and rapid advancements in the field of oral biology and dental materials. This heterogeneity in protocols may cause confusion among dental practitioners; therefore, guidelines and considerations for ITR should be explicated. This expert consensus discusses the biological foundation of ITR, the available clinical protocols and current status of ITR in treating teeth with refractory apical periodontitis or anatomical aberration, and the main complications of this treatment, aiming to refine the clinical management of ITR in accordance with the progress of basic research and clinical studies; the findings suggest that ITR may become a more consistent evidence-based option in dental treatment.
Humans
;
Tooth Replantation/methods*
;
Consensus
;
Periapical Periodontitis/surgery*
4.Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults (version 2024)
Qingde WANG ; Yuan HE ; Bohua CHEN ; Tongwei CHU ; Jinpeng DU ; Jian DONG ; Haoyu FENG ; Shunwu FAN ; Shiqing FENG ; Yanzheng GAO ; Zhong GUAN ; Hua GUO ; Yong HAI ; Lijun HE ; Dianming JIANG ; Jianyuan JIANG ; Bin LIN ; Bin LIU ; Baoge LIU ; Chunde LI ; Fang LI ; Feng LI ; Guohua LYU ; Li LI ; Qi LIAO ; Weishi LI ; Xiaoguang LIU ; Hongjian LIU ; Yong LIU ; Zhongjun LIU ; Shibao LU ; Yong QIU ; Limin RONG ; Yong SHEN ; Huiyong SHEN ; Jun SHU ; Yueming SONG ; Tiansheng SUN ; Yan WANG ; Zhe WANG ; Zheng WANG ; Hong XIA ; Guoyong YIN ; Jinglong YAN ; Wen YUAN ; Zhaoming YE ; Jie ZHAO ; Jianguo ZHANG ; Yue ZHU ; Yingjie ZHOU ; Zhongmin ZHANG ; Wei MEI ; Dingjun HAO ; Baorong HE
Chinese Journal of Trauma 2024;40(2):97-106
Ankylosing spondylitis (AS) combined with lower cervical fracture is often categorized into unstable fracture, with a high incidence of neurological injury and a high rate of disability and morbidity. As factors such as shoulder occlusion may affect the accuracy of X-ray imaging diagnosis, it is often easily misdiagnosed at the primary diagnosis. Non-operative treatment has complications such as bone nonunion and the possibility of secondary neurological damage, while the timing, access and choice of surgical treatment are still controversial. Currently, there are no clinical practice guidelines for the treatment of AS combined with lower cervical fracture with or without dislocation. To this end, the Spinal Trauma Group of Orthopedics Branch of Chinese Medical Doctor Association organized experts to formulate Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults ( version 2024) in accordance with the principles of evidence-based medicine, scientificity and practicality, in which 11 recommendations were put forward in terms of the diagnosis, imaging evaluation, typing and treatment, etc, to provide guidance for the diagnosis and treatment of AS combined with lower cervical fracture.
5.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
6.Research and Application Progress of Near Infrared Spectroscopy Analytical Technology in China in the Past Five Years
Pu CHEN ; Jian YANG ; Xiao-Li CHU ; Jing-Yan LI ; Yu-Peng XU ; Dan LIU
Chinese Journal of Analytical Chemistry 2024;52(9):1213-1224
Near infrared spectroscopy is a molecular absorption spectrum with rich compositional and structural information,and its applications are very extensive.In recent years,driven by the background of artificial intelligence,the Internet of Things,and smart factories,the near-infrared spectroscopy analysis technology in China has achieved rapid and high-quality development.Research and application in many fields have been further strengthened,achieving good results.In this paper,the research and application progresses of near infrared spectroscopy in China in the past five years(from 2019 to 2023)were reviewed with 105 references.The content involved methodology research,practical technology research,application research and so on,and some suggestions were put forward for the research and development of the key technologies of near infrared spectroscopy in the future.
7.Environmental hygiene and healthcare-associated infection:a time-series study based on generalized additive model
Kai LIN ; Kun CHEN ; Jian-Bing WANG ; Fang-Hua FAN ; Hui LIANG ; Fang CHEN ; Kai-Ling JIN ; Wen-Jie CHU ; Wei-Guo CHEN ; Huan SHAN
Chinese Journal of Infection Control 2024;23(7):798-805
Objective To quantitatively analyze the impact of environmental hygiene on the occurrence of health-care-associated infections(HAI).Methods Monitoring data of HAI and environmental hygiene from a tertiary first-class hospital from January 2018 to December 2022 were collected,and the impact of environmental bacterial colony forming unit(CFU)on the occurrence of HAI was analyzed by a time-series generalized additive model.Results The single-contamination model showed a significant positive correlation between HAI and staff's hand bacterial CFU(β1=0.009,P=0.012).For an increase of 1 interquartile range(IQR)in the monthly mean CFU per dish(MCFU/Dish)of staffs'hand,the incidence of HAI increased by 13.28%(95%CI:2.82%-24.81%).Subgroup and lag effect analysis showed that when the monthly MCFU/Dish(after hand disinfection)of staffs'hand in-creased by one IQR,the excess risk(ER)of HAI for the month(lag0)was 16.26%(95%CI:15.45%-17.09%).In the multi-contamination model,the correlation between surface contamination and HAI was also statistically sig-nificant.Conclusion There is a significant correlation between hospital environmental hygiene and the occurrence of HAI.
8.Development and validation of a stromal-immune signature to predict prognosis in intrahepatic cholangiocarcinoma
Yu-Hang YE ; Hao-Yang XIN ; Jia-Li LI ; Ning LI ; Si-Yuan PAN ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Peng-Cheng WANG ; Chu-Bin LUO ; Rong-Qi SUN ; Jia FAN ; Jian ZHOU ; Zheng-Jun ZHOU ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2024;30(4):914-928
Background:
Intrahepatic cholangiocarcinoma (ICC) is a highly desmoplastic tumor with poor prognosis even after curative resection. We investigated the associations between the composition of the ICC stroma and immune cell infiltration and aimed to develop a stromal-immune signature to predict prognosis in surgically treated ICC.
Patients and methods:
We recruited 359 ICC patients and performed immunohistochemistry to detect α-smooth muscle actin (α-SMA), CD3, CD4, CD8, Foxp3, CD68, and CD66b. Aniline was used to stain collagen deposition. Survival analyses were performed to detect prognostic values of these markers. Recursive partitioning for a discrete-time survival tree was applied to define a stromal-immune signature with distinct prognostic value. We delineated an integrated stromal-immune signature based on immune cell subpopulations and stromal composition to distinguish subgroups with different recurrence-free survival (RFS) and overall survival (OS) time.
Results:
We defined four major patterns of ICC stroma composition according to the distributions of α-SMA and collagen: dormant (α-SMAlow/collagenhigh), fibrogenic (α-SMAhigh/collagenhigh), inert (α-SMAlow/collagenlow), and fibrolytic (α-SMAhigh/collagenlow). The stroma types were characterized by distinct patterns of infiltration by immune cells. We divided patients into six classes. Class I, characterized by high CD8 expression and dormant stroma, displayed the longest RFS and OS, whereas Class VI, characterized by low CD8 expression and high CD66b expression, displayed the shortest RFS and OS. The integrated stromal-immune signature was consolidated in a validation cohort.
Conclusion
We developed and validated a stromal-immune signature to predict prognosis in surgically treated ICC. These findings provide new insights into the stromal-immune response to ICC.
9.Relationship between clopidogrel resistance and genetic variability in Kawasaki disease children with coronary artery lesions
Yinyin CAO ; Qiyang PAN ; Jian LI ; Xiaofang ZHONG ; Xuecun LIANG ; Lan HE ; Chen CHU ; Quming ZHAO ; Lu ZHAO ; Feng WANG ; Shuna SUN ; Yixiang LIN ; Guoying HUANG ; Fang LIU
Chinese Journal of Pediatrics 2024;62(10):981-988
Objective:To analyze the distribution of clopidogrel metabolism-related gene variability in Kawasaki disease (KD) children with coronary artery lesions (CAL) across different age groups and the impact of genetic variability on the efficacy of clopidogrel antiplatelet therapy.Methods:A retrospective cohort study was conducted. Clinical data were collected from 46 KD children with CAL who were hospitalized in the Cardiovascular Center of Children′s Hospital of Fudan University between January 2021 and August 2022 and were treated with clopidogrel, including gender, age, body mass index, course of KD, CAL severity grade, and baseline platelet count. According to their age, the children were divided into ≥2-year-old group and <2-year-old group. Their platelet responsiveness was assessed by adenosine diphosphate-induced platelet inhibition rate (ADPi) calculated via thromboelastography, and children were categorized into high on-treatment platelet reactivity (HTPR) and normal on-treatment platelet reactivity (NTPR) groups. Genotypes of CYP2C19, PON1 and ABCB1 were detected. The t test, one-way analysis of variance and Chi-square test were used for intergroup comparison. Results:Among the 46 KD children with CAL, 34 were male and 12 were female; 37 were ≥2-year-old and 9 were <2-year-old; 25 cases were in the HTPR group and 21 cases were in the NTPR group, with 19 HTPR and 18 NTPR in the ≥2-year-old group, and 6 HTPR and 3 NTPR in the <2-year-old group. Genetic analysis showed that 92 alleles among the 46 children, with frequencies of CYP2C19*1, CYP2C19*2, CYP2C19*3, CYP2C19*17, PON1 192Q, PON1 192R, ABCB1 3435C, ABCB1 3435T at 59% (54/92), 32% (29/92), 9% (8/92), 1% (1/92), 36% (36/92), 64% (59/92), 63% (58/92) and 37% (34/92), respectively. Analysis of the impact of genotype on ADPi revealed that in children aged ≥2 years, those with CYP2C19*1/*3 genotype had significantly lower ADPi than those with CYP2C19*1/*1 genotype ((34±15)% vs. (61±29)%, t=2.18, P=0.036). There were also no significant difference in ADPi among children with PON1 192Q homozygous, PON1 192R heterozygote and PON1 192R homozygous genotypes ((40±22)% vs. (52±33)% vs. (65±27)%, F=2.17, P=0.130), or among those with ABCB1 3435C homozygous, ABCB1 3435T heterozygote and ABCB1 3435T homozygous genotypes ((55±34)% vs. (60±27)% vs. (49±24)%, F=0.33, P=0.719). In <2-year-old group, there were no significant differences in ADPi across CYP2C19*1/*1, CYP2C19*1/*2 and CYP2C19*2*2 genotypes ((40±20)% vs. (53±37)% vs. (34±16)%, F=0.37, P>0.05). There were no significant differences in ADPi across CYP2C19*1/*1 and CYP2C19*1/*3 genotypes ((44±27)% vs. (42±20)%, t=0.08, P>0.05). There were no significant differences in ADPi across PON1 192Q homozygous, PON1 192R heterozygote and PON1 192R homozygous genotypes (45% vs. (55±27)% vs. (24±5)%, F=1.83, P>0.05). There were no significant differences in ADPi across ABCB1 3435C homozygous, ABCB1 3435T heterozygote and ABCB1 3435T homozygous genotypes ((36±16)% vs. (50±35)% vs. 45%, F=0.29, P>0.05). The risk analysis of HTPR in different genotypes revealed that in children aged ≥2 years, carrying at least 1 or 2 loss-of-function alleles of CYP2C19 was a risk factor for HTPR ( OR=4.69, 10.00, 95% CI 1.11-19.83, 0.84-119.32, P=0.033, 0.046, respectively), and PON1 192R homozygosity and carrying at least one PON1 192R allele were protective factors against HTPR ( OR=0.08, 0.13, 95% CI 0.01-0.86, 0.01-1.19, P=0.019, 0.043, respectively). Conclusion:KD children aged ≥2 years carrying CYP2C19 loss-of-function alleles and PON1 192Q are more likely to develop HTPR.
10.Expression of IGLL1 Gene and Its Clinical Significance in Pediatric T-ALL.
Shui-Yan WU ; Xin-Ran CHU ; Qi JI ; Xiao-Chen LIN ; Zhen-Jiang BAI ; Jian-Qin LI ; Jian PAN ; Zi-Xing CHEN ; Shao-Yan HU
Journal of Experimental Hematology 2023;31(4):999-1004
OBJECTIVE:
To detect the relative expression of IGLL1 (immunoglobulin lambda-like polypeptide 1) mRNA in bone marrow of children with T-cell acute lymphoblastic leukemia (T-ALL), and analyze its correlation with the clinical characteristics and prognosis of the patients, so as to clarify the clinical significance of IGLL1 in pediatric T-ALL patients.
METHODS:
A total of 56 pediatric T-ALL patients hospitalized in Children's Hospital of Soochow University from June 2012 to December 2017 and treated with CCLG-ALL 2008 regimen were selected. Transcriptome sequencing technology was used to detect the transcription level of IGLL1 gene in children with T-ALL. According to 25% of the IGLL1 transcription level (cutoff value:448), the enrolled children were divided into IGLL1 low expression group (17 cases) and IGLL1 high expression group (39 cases). Combined with clinical data, the correlation between the expression level of IGLL1 and prognosis of the patients was analyzed.
RESULTS:
The comparative analysis showed that the transcription level of IGLL1 was not correlated with the clinical characteristics of the patients, such as sex, age, bone marrow blast, white blood cell (WBC) count at initial diagnosis. The 5-year OS rate of patients with high IGLL1 expression was significantly higher than that of patients with low IGLL1 expression (76.9%±6.7% vs 47.1%±12.1%, P =0.018). Further comparison of relapse-free survival (RFS) rate between the two groups showed that the 5-year RFS rate of patients with high IGLL1 expression was higher than that of patients with low IGLL1 expression, but the difference between the two groups was not statistically significant (P =0.095). Multivariate COX analysis was conducted on common clinical prognostic factors (age, sex, WBC count at diagnosis, prednisone response on the 7th day, bone marrow response on the 15th day after treatment) and IGLL1 expression level, and the results showed that IGLL1 expression (P =0.012) and prednisone response (P =0.017) were independent risk factors for overall survival in pediatric T-ALL patients.
CONCLUSION
In pediatric T-ALL, the OS rate of children with high expression of IGLL1 gene was significantly higher than that of children with low expression of IGLL1 gene, and the expression level of IGLL1 gene was an independent factor affecting the survival of children with T-ALL, which suggests that IGLL1 is a marker of good clinical prognosis of children with T-ALL.
Child
;
Humans
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Clinical Relevance
;
Disease-Free Survival
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Prednisone/therapeutic use*
;
Prognosis
;
Recurrence
;
Immunoglobulin Light Chains, Surrogate/genetics*

Result Analysis
Print
Save
E-mail